
IAS/PCMI Summer Session 2000
Clay Mathematics Undergraduate Program

Advanced Course on Computational Complexity

Lecture 5: Boolean Formulas, NC1, and

M-Programs

David Mix Barrington and Alexis Maciel
July 21, 2000

1. Overview

We’ve now shown the circuit class AC0 to be equivalent to first-order formulas at
various levels of uniformity, making it a “non-uniform analogue” of the first-order
or star-free languages. With M -programs over arbitrary finite monoids, we have a
similar non-uniform analogue of the regular or recognizable languages. In this lecture
we characterize the computational power of M -programs, bringing in the models of
log-depth circuits and boolean formulas. Specifically:

• We define the model of boolean formulas, show their relationship to circuits, and
(in an exercise) show how arbitrary poly-size boolean formulas are equivalent
to balanced, log-depth boolean formulas.

• We argue that poly-length M -programs (over any finite monoid) can be simu-
lated by log-depth boolean formulas, putting languages decided by such formu-
las in (non-uniform) NC1.

• We develop some finite group theory, showing how to represent finite groups as
permutations and defining commutator subgroups and solvable groups.

• We show that any log-depth boolean formula can be simulated by a poly-length
M -program over the group S5, proving that the languages decided by poly-
length M -programs are equal to non-uniform NC1. In the exercises we discuss
uniform versions of this result.

• We look briefly at what algebra might tell us about the internal structure of
NC1.

1



2. Boolean Formulas

A boolean formula is combination of boolean input variables by the binary operations
AND and OR and the unary operation NOT. (Without loss of generality, we assume
that all NOT operations have been pushed to the bottom, so they may only be applied
to input gates.) If we represent the formula as a circuit, it has fan-in two and fan-out
one, meaning that as a graph it is a tree rather than a general directed acyclic graph.
But we can also represent the formula as a string, in the familiar infix, postfix, or
prefix notation. Just like circuits, boolean formulas represent a function from Σn to
{0, 1}, and a family of boolean formulas represents a function from Σ∗ to {0, 1} and
thus a formal language. We can measure the size and depth functions of a formula
family just as for a circuit family. There are several different predicates we could
examine to define the uniformity of a formula family, and the choice is sometimes
significant depending on the restrictiveness of the uniformity condition.

In the basic lectures we have defined the complexity class NC1, of languages
decided by circuit families of fan-in two, O(log n) depth, and polynomial size. The
circuits in such a family need not represent formulas, but given any NC1 circuit family
we can construct an equivalent formula family of polynomial size and the same depth.
We do this by eliminating any situations where the fan-out in the circuit is greater
than one, making a separate copy of the gate (and everything under it) for each wire
that wants to access that gate. (Inductively, for every possible sequence of left and
right branchings through the circuit, we have a gate in the formula that is a copy of
the circuit gate reached by the path.) This process clearly preserves depth but may
increase the size. However, it is clear that a formula of fan-in two and depth d can
have at most 2d leaves and at most 2d+1 − 1 total gates. So logarithmic depth and
fan-in two imply polynomial size, and the “polynomial size” condition in the definition
of NC1 is redundant.

Is this process uniform, that is, does it produce a uniform formula from a uniform
circuit? We can choose a layout of the formula as a string, so that the index of a bit
records the sequence of left and right choices leading to a particular operator. But to
determine which gate goes in which place by reference only to the circuit, we need to
be able to take a sequence of left and right choices and produce a gate number. This
predicate is sometimes called the extended connection language of the circuit. We can
see that if the extended connection language is in DLOGTIME, for example, we can
arrange the formula so that it is also DLOGTIME uniform. But if we are given only
the child and gate-type predicates for the circuit, more computation will apparently
be required to answer uniformity questions about the formula.

One might wonder about the class of languages decided by poly-size boolean

2



formulas of any depth, not just the relatively balanced formulas of O(log n) depth.
At least in the non-uniform case, as we will see in the exercises, it is possible to
take an arbitrary boolean formula and balance it — construct an equivalent formula
of polynomially greater size but depth logarithmic in its size. It is not clear even
from this construction that an NC1 circuit family can be designed that will solve the
boolean formula value problem, which is to input a formula and an input string and to
evaluate the formula. (The equivalent boolean sentence value problem is to evaluate a
formula that has constant gates in place of its inputs.) In fact this problem is known
to be in uniform NC1 by a theorem of Sam Buss that works through the intermediate
model of log-time alternating machines. We will define alternating machines in Basic
Lecture 11, but we won’t be able to prove Buss’ theorem here.

3. Simulating M-Programs With Formulas

Let M be an arbitrary finite monoid, and let L be defined by a family of M -programs
of polynomial size. That is, for each n there is a program of length p(n) that computes
a mapping φ from Σn to M , such that L = φ−1(X) for some set X ⊆ M . We will
show in this section that L has poly-size log-depth boolean formulas and is thus in
NC1.

In Advanced Lecture 4 we showed that every regular language is in NC1, and
the present proof is only a slight generalization of this earlier argument. For a given
input size n, the instructions of the program define a sequence of monoid elements
that multiply to φ(w) for any given input word w. We can make a sequence of
O(1) size circuits each of which accesses a letter of w and produces the yield of one
instruction. This sequence of circuits is essentially as uniform as the program is, since
each circuit implements a lookup function given by the instruction.

The largest computational task in evaluating the program is to multiply p(n)
monoid elements to get a single element φ(w). Once we have this, we need only O(1)
size to determine whether φ(w) is in X and thus whether w is in L. The iterated
product operation can be carried out by a binary tree of binary product operations,
and each binary product operation takes O(1) size (as does any function with O(1)
inputs and O(1) outputs). The resulting circuit can be converted to a formula as
in the previous section, and the formula family is quite uniform (unless the program
family itself was not uniform).

3



4. Permutation Groups and Solvability

A finite group is a monoid where each element x has an inverse y such that xy =
yx = e. A finite group can be represented as a set of permutations (one-to-one, onto
functions) of a finite set under the operation of composition — one way to do this is
to represent each group element x as the permutation that takes an element y to the
product yx. We define Sn to be the group of all permutations of an n-element set,
and note that we have shown that every finite group is isomorphic to a subgroup of
Sn for some n.

We can represent an element x of Sn by a sequence of n distinct numbers in the
range from 1 through n, in two separate ways. The obvious way is the pointwise
notation, giving the sequence x(1), x(2), . . . , x(n). Another way is cycle notation,
using the fact that any permutation divides the point set into orbits or cycles. For
example, the element of S5 with pointwise representation 5, 3, 2, 1, 4 has two orbits:
1 goes to 5 which goes to 4 which goes to 1, and 2 and 3 are interchanged. We can
write the permutation as (154)(23) to record this information. Of course there are
many ways to write the same permutation, such as (32)(541) or (415)(32), but we can
pick a canonical one if we want. The standard choice is to start each cycle with its
smallest-numbered element, then order the cycles in descending order of first element.
(Our example thus becomes (23)(154).) This allows us to omit the parentheses and
still convert from pointwise to cycle notation and vice versa (see the exercises).

We need to do a bit of group theory in this section, developing the concepts of
commutator subgroups and solvability. Let G be any finite group. The commutator
of two elements x and y of G is the element xyx−1y−1, where x−1 is the inverse of
x guaranteed by the group axioms. The commutator subgroup of G is the subgroup
generated by the set of all commutator elements for all x and y. (Note that the
commutator subgroup can contain elements that are not commutators themselves, as
there is no guarantee that the set of commutators is closed under multiplication.) In
an abelian group, where every two elements x and y satisfy xy = yx, every commuta-
tor is equal to the identity and so the commutator subgroup is just {e}. An example
of a non-abelian finite group is S3, the permutations of three elements. The reader
may verify that the 36 commutators are each equal to one of e, (123), or (132). (For
example, (12)(123)(21)(321) is equal to (123). The cycle notation is easy to compute
with given a bit of practice. You get the inverse of a permutation by reversing each
cycle. A product where the cycles are not disjoint may be computed by tracing the
effect of successive cycles on each element.) Since these three elements form a sub-
group, the commutator subgroup of S3 is the group containing these three elements,
called A3 and isomorphic to the integers modulo 3.

4



Beginning with any finite group G, we can define a series of groups G0 = G, G1,
G2,. . . , by letting Gi+1 be the commutator subgroup of Gi. With S3, as we have
seen, G0 = S3, G1 = A3, and G2 = {e}. Since the groups are finite, one of two
things must happen to this sequence: it will reach {e} or it will reach some other
group whose commutator subgroup is itself. Groups in which the former happens are
called solvable, the others are called non-solvable. (The reason for the terminology
comes from Galois theory, the setting in which groups were originally defined. An
equation in which the possible permutations of the roots forms a solvable group can
be solved by radicals, other equations cannot. The fact that S5 is not a solvable group
is the basis of Abel’s proof that arbitrary fifth-degree equations cannot be solved by
radicals.)

There is an intuitive sense in which solvable groups are “nearly abelian”, while
non-solvable groups are non-abelian in a very strong sense. In the next section we
will show a computational consequence of non-solvability.

5. Simulating Formulas With M-Programs

We are now ready to show that M -programs are surprisingly powerful. They can
simulate all of NC1, which (as we will see in next week’s lectures) includes the majority
language, integer multiplication, and much more. We will give the original argument
that constructs a program over the group S5, leaving it to the exercises to show that
a similar construction works for arbitrary non-solvable groups.

Theorem 1 (Barrington’s Theorem:) Polynomial-length programs over S5 recognize
exactly those languages in NC1.

Proof We will argue that given any boolean formula F of depth d, there exists a
program B of length 4d over S5 that simulates F in a particular way. On an input word
w, B will define a permutation B(w) in S5, and we will ensure that B(w) = (12345)
if F (w) = 1 and B(w) = e otherwise. We say in this case that the language of F “is
five-cycle recognized by B”. (A five-cycle is a permutation that has exactly one orbit
of size five.) Before we get to the key step in the proof, we need a series of lemmas.

Lemma 2 If B is a program of length at least one, and σ and τ are fixed permuta-
tions, there exists a program C, of the same length as B, such that for any w we have
C(w) = σB(w)τ .

5



Proof Alter the first instruction of B by multiplying each possible yield on the left
by σ, and alter the last instruction of B by multiplying each possible yield on the
right by τ . The product of the yields of the instructions of C will then be σ times
the product of the yields of B times τ . ut

Lemma 3 The language of any input gate is five-cycle recognized by a program of
length 1.

Proof The instruction can query the variable of the gate, output (12345) if the
variable has the desired value, and output e if it doesn’t. ut

Lemma 4 A language L is five-cycle recognized by a program of length t iff for any
five-cycle σ, there is a program of length t that outputs σ if w ∈ L and outputs e if
w 6∈ L.

Proof If σ is a five-cycle, then there exists a permutation θ such that σ =
θ(12345)θ−1. Using an earlier lemma, then, we can convert a program that outputs
(12345) iff w ∈ L to one that outputs σ iff w ∈ L and vice versa. Since θeθ−1 = e for
any θ, these programs all output e if w 6∈ L. ut

Lemma 5 If L is five-cycle recognized by a program of length t, then its complement
is also recognized by a program of length t.

Proof Using the earlier lemma, multiply the first program on the right by (54321)
so that it outputs e if w ∈ L and (54321) otherwise. By the last lemma, since (54321)
is a five-cycle, the complement of L is five-cycle recognized by a program of length t.

ut

We are now ready for the main proof. We show by induction that a formula of
depth d has a language five-cycle recognized by a program of length at most 4d. The
base case of d = 0, where the formula is an input gate, is handled above. We have
also handled the case of a NOT gate, and provided a way to convert OR gates to
AND gates, with the complementation lemma above. The argument we need to finish
is the following, the implementation of an AND gate:

Lemma 6 If L1 and L2 are languages five-cycle recognized by programs A1 and A2

respectively, each of length t, then L1 ∩ L2 is five-cycle recognized by a program of
length 4t.

6



Proof Using the previous lemmas, we design programs as follows:

• B1(w) = (12345) iff w ∈ L1, B1(w) = e otherwise,

• B2(w) = (13542) iff w ∈ L2, B2(w) = e otherwise,

• C1(w) = (54321) iff w ∈ L1, C1(w) = e otherwise,

• C2(w) = (24531) iff w ∈ L2, C2(w) = e otherwise.

Let the program B be the concatenation B1B2C1C2. There are four cases to
consider:

• w 6∈ L1, w 6∈ L2, B(w) = eeee = e.

• w 6∈ L1, w ∈ L2, B(w) = e(13542)e(24531) = e.

• w ∈ L1, w 6∈ L2, B(w) = (12345)e(54321)e = e.

• w ∈ L1, w ∈ L2, B(w) = (12345)(13542)(54321)(24531) = (13254).

The language L1∩L2 is thus five-cycle recognized by a program of length 4t. This
closes the induction and proves Barrington’s Theorem. ut

ut

The permutation fact used at the end of the proof may seem somewhat ad hoc,
but let’s look at it more closely. (The exercises ask you to in effect show that a similar
trick can be used in any non-solvable group.) By concatenating the four programs,
we recognize L1 ∩ L2 with output equal to the commutator of the two outputs we
had available. This commutator has to be in the commutator subgroup of G. If
this subgroup were not all of G, we would be restricted at the next level in what
the output of our programs could be. The construction works only because we can
take two sufficiently generic elements of the group, take their commutator, and get
a sufficiently generic element in return. The determining factor in whether we can
repeatedly take commutators as long as we want, before being forced to the identity,
is exactly the non-solvability of the group.

7



6. The Internal Structure of NC1

Earlier we mentioned the structure theory of finite monoids due to Krohn and Rhodes,
which explains how all monoids may be built up from building blocks that are either
aperiodics or simple groups. A simple group is one that has no non-trivial normal
subgroups (in particular, its commutator subgroup is either itself or {e}). The most
familiar examples of simple groups are the integers modulo a prime (abelian simple
groups) and the groups An, the commutator subgroup of Sn, for all n ≥ 5. (The
full set of finite simple groups was characterized in the 1970’s, in one of the great
triumphs of modern mathematics.)

If a monoid contains any non-abelian simple group, then poly-size programs over
it recognize exactly the languages in NC1. Is the converse of this statement true?
The composition operation in the Krohn-Rhodes theorem corresponds fairly closely
to stacking of levels of gates in a circuit. If a monoid contains only solvable group and
aperiodic pieces, it is called a solvable monoid. Solvable monoids turn out to be closely
related to another circuit complexity class, which was proposed (in Barrington’s Ph.D.
thesis, actually) as an intermediate step between AC0 and larger classes:

Definition: A MOD-m gate for a number m > 1 takes any number of boolean
inputs and outputs 1 iff their sum (as integers) is not divisible by m. The complexity
class ACC0 consists of the languages recognized by circuit families where the circuits
have constant depth, unbounded fan-in, polynomial size, and have AND, OR, and
MOD-m gates where m is fixed for the circuit family.

Theorem 7 (Barrington-Thérien, not proved here) A language has poly-size pro-
grams over a solvable monoid iff it is in ACC0.

Conjecture 8 (The “ACC Conjecture”) ACC0 6= NC1.

In Basic Lecture 10 we will prove an important special case of the ACC Conjecture
due to the late Roman Smolensky — that if all the MOD gates in an ACC0 circuit
have the same prime modulus p (actually we’ll only prove it for p = 3), then the
circuit cannot simulate a MOD-q gate where q is any number except for a power
of p. This result followed fairly quickly upon the Furst-Saxe-Sipser theorem that
AC0 circuits cannot simulate a MOD-2 gate, and led to considerable optimism about
further progress toward resolving the ACC Conjecture and proving lower bounds for
larger and larger class. But now, fifteen years after Smolensky’s proof, the ACC
Conjecture remains unresolved without much apparent progress. It is still consistent
with our current knowledge that ACC0 might contain all problems in P, or even all

8



problems in NP! No one really believes that MOD-6 gates, for example, contain any
strange computational power, but proving that they don’t has proved very difficult.

7. Exercises

1. Show that any formula of size s is equivalent to another formula of size sO(1)

and depth O(log s). (Hint: A useful lemma is that any binary tree has an edge
splitting it into two pieces each containing at least a third of the nodes. Using
this, divide an arbitrary tree into two pieces R and S such that R contains the
output gate and S fits into a leaf of R. Let R0 and R1 be the trees with a 0
and a 1 respectively substituted for S’s leaf. Note that the original formula is
equivalent to (R0 ∧ ¬S) ∨ (R1 ∧ S). Recursively apply this transformation to
R and S and use a recurrence to measure the size and depth of the resulting
formula.)

2. Show that the pointwise form of a permutation can be determined from the
given canonical cycle form, with no parentheses, in FO + BIT. Show that this
canonical cycle form can be determined from the pointwise form in L. (Explain
why any ordering of the n numbers is the canonical cycle form of exactly one
permutation.)

3. Show that S4 is a solvable group by finding the series of subgroups given in the
definition of solvability.

4. Show that any formal language can be decided by a family of programs over
the group S3, in general with exponential program length. Show that this is
not true for the group S2.

5. Argue carefully that a language is in DLOGTIME-uniform NC1 iff it has
DLOGTIME-uniform poly-size programs over S5. For NC1, define uniformity
by the extended connection language: given any sequence of O(log n) L’s and
R’s and a gate number, in DLOGTIME we can determine whether that se-
quence of branchings from the output leads to that gate. You may make other
convenience assumptions about the circuits if you want.

6. Show that if G is any non-solvable group, any boolean formula of depth d may
be simulated by a program over G of length cd for some number c depending
on G.

7. Let G be a solvable group. Show that any poly-length program family over
G can be evaluated by a circuit family where the circuits have O(1) depth,

9



polynomial size, and only MOD gates of unbounded fan-in. (This puts these
language into a subset of ACC0 called “CC0”. It is not known whether the
AND function on n inputs is in CC0 — if it is then CC0 = ACC0.)

10


