
Introduction to
Data Abstraction, Algorithms

and Data Structures

With C++ and the STL

Fall 2016

Alexis Maciel
Department of Computer Science

Clarkson University

Copyright c© 2016 Alexis Maciel

ii

Contents

Preface ix

1 Abstraction 1
1.1 A Pay Calculator . 1
1.2 Design . 5
1.3 Names . 9
1.4 Implementation . 11
1.5 Modularity and Abstraction . 20

2 Data Abstraction 25
2.1 Introduction . 25
2.2 Classes to Enforce Data Abstraction 28
2.3 Classes to Support Object-Oriented Programming 31
2.4 Constant Methods . 39
2.5 Inline Methods . 41
2.6 Constructors . 44
2.7 Get and Set Methods . 53
2.8 Operators . 59
2.9 Compiling Large Programs . 67

iii

iv CONTENTS

2.10 The make Utility . 72

3 Strings and Streams 75
3.1 C Strings . 75
3.2 C++ Strings . 81
3.3 I/O Streams . 88
3.4 String Streams . 95

4 Error Checking 99
4.1 Introduction . 99
4.2 Exceptions . 103
4.3 Input Validation . 111

5 Vectors 117
5.1 A Simple File Viewer . 117
5.2 Vectors in the STL . 119
5.3 Design and Implementation of the File Viewer 125
5.4 Vectors and Exceptions . 137
5.5 Arrays . 138

6 Generic Algorithms 143
6.1 Introduction . 143
6.2 Iterators . 146
6.3 Iterator Types and Categories . 154
6.4 Vectors and Iterators . 159
6.5 Algorithms in the STL . 161
6.6 Implementing Generic Algorithms . 167
6.7 Initializer Lists . 172
6.8 Functions as Arguments . 174

CONTENTS v

6.9 Function Objects . 179

7 Linked Lists 185
7.1 A Simple Text Editor . 185
7.2 Vector Version of the Text Editor . 186
7.3 Vectors and Linked Lists . 199
7.4 Linked Lists in the STL . 202
7.5 List Version of the Text Editor . 207

8 Maps 209
8.1 A Phone Book . 209
8.2 Maps in the STL . 213
8.3 Design and Implementation of the Phone Book 220

9 Object-Oriented Design 231
9.1 The Software Life Cycle . 231
9.2 The Software Development Process 233
9.3 Specification, Design and Implementation 236

10 Dynamically Allocated Arrays 245
10.1 The Size of Ordinary Arrays . 245
10.2 The Dynamic Allocation of Arrays . 247
10.3 Programming with Dynamically Allocated Arrays 249

11 Implementation of Vectors 259
11.1 A Basic Class of Vectors . 259
11.2 Iterators, Insert and Erase . 265
11.3 Destroying and Copying Vectors . 269
11.4 Growing and Shrinking Vectors Efficiently 275

vi CONTENTS

12 Implementation of Linked Lists 283
12.1 Nodes and Links . 283
12.2 Some Basic Methods . 287
12.3 Iterators, Insert and Erase . 293
12.4 Destroying and Copying Linked Lists 304

13 Analysis of Algorithms 307
13.1 Introduction . 307
13.2 Measuring Exact Running Times . 309
13.3 Analysis . 311
13.4 Asymptotic Running Times . 314
13.5 Some Common Running Times . 318
13.6 Basic Strategies . 319
13.7 Worst-Case and Average-Case Analysis 329
13.8 The Binary Search Algorithm . 332

14 Recursion 337
14.1 The Technique . 337
14.2 When to Use Recursion . 348
14.3 Tail Recursion . 350

15 Sorting 353
15.1 Selection Sort . 353
15.2 Insertion Sort . 359
15.3 Mergesort . 363
15.4 Quicksort . 372

Bibliography 379

CONTENTS vii

Index 381

viii CONTENTS

Preface

These notes are for a second course on computer programming and software de-
velopment. In a first course, you likely focused on learning the basics: variables,
control statements, input and output, files, vectors (or arrays), and functions.
These concepts are critically important and they are sufficient for the creation of
many useful programs. But many other programs, especially large ones, require
more powerful concepts and techniques.

The creation of large computer programs poses three basic challenges. The
overall goal of these notes is to teach you concepts and techniques that will allow
you to meet these three challenges. Here’s an overview.

First, a large program always contains a large amount of details and all this
information can be difficult to manage. The solution is to organize the program
into a set of smaller components. This modularity is usually achieved through the
technique of abstraction. Even if you are not familiar with these terms, you have
already used abstraction in your programs: abstraction happens automatically
every time you create a function. In these notes, you will learn how to apply the
technique of abstraction to data.

Second, a large program typically holds a large amount of data that needs to
be accessed efficiently. In response, computer scientists have invented a wide va-
riety of data structures, which are ways of organizing data so it can be stored and

ix

x PREFACE

accessed efficiently. You are already familiar with one data structure: vectors (or
arrays). In these notes, you will learn about other basic data structures: linked
lists, sets and maps. You will learn how and when to use these data structures.
You will also learn the techniques involved in the implementation of vectors and
linked lists.

Third, a large program often performs complex tasks that require nontrivial
techniques. Computer scientists have designed algorithms that perform a wide
variety of complex tasks efficiently. In these notes, you will learn efficient al-
gorithms for searching and sorting. You will also learn to design algorithms
using the technique of recursion and how to analyze the efficiency of simple
algorithms.

Most of the concepts and techniques you will learn will be introduced
through the creation of programs that are representative of real-life software.
These examples will show that these concepts and techniques are tools that have
been developed to solve real problems.

As you learn about data abstraction, data structures and algorithms, you will
also learn about a number of other important topics such as the overall software
development process, the importance of good documentation, object-oriented
design, classes, pointers, dynamic memory allocation, exceptions, testing, the
use of standard software components (as available in a standard library), and
the creation of generic software components using templates and iterators.

These notes use the programming language C++ and its associated Standard
Template Library (STL). Even though the main focus of these notes is not on the
C++ language itself, you will learn all the relevant features of C++ and the
STL. In particular, you will learn to implement data structures that are realistic
subsets of the data structures provided in the STL.

After reading these notes and working on the exercises, you will be able
to create fairly complex computer programs. But you will also be prepared to

xi

continue your study of computer science and software development. For exam-
ple, at Clarkson University, these notes were written for CS142 Introduction to
Computer Science II, a course that leads directly to CS242 Advanced Program-
ming Concepts (graphical user interfaces, more advanced object-oriented pro-
gramming), CS344 Algorithms and Data Structures (more advanced than those
covered in these notes) and CS241 Computer Organization. In fact, the topics
covered in these notes are the foundation you need for the study of almost every
other subject in computer science, including programming languages, operating
systems, artificial intelligence, cryptography, computer networks, database sys-
tems, as well as, of course, large-scale software development.

These notes were typeset using LaTeX (MiKTeX implementation with the TeX-
works environment). The paper size and margins are set small to make it easier
to read the notes on a small screen. If the notes are to be printed, it is recom-
mended that they be printed double-sided and at “Actual size”, not resized to
“Fit” the paper. Otherwise, you’ll get pages with huge text and tiny margins.

Feedback on these notes is welcome. Please send comments to
alexis@clarkson.edu.

xii PREFACE

Chapter 1

Abstraction

In this chapter, we will create a relatively simple program. This will allow us
to review basic programming concepts such as files, functions and structures. It
will also allow us to discuss the important topics of modularity and abstraction.

1.1 A Pay Calculator

We will create a pay calculator that computes what each employee of a small
company should be paid for a day of work. The program reads a file containing
the times when the employees started and stopped working. The program then
computes the amount each employee should be paid and writes that information
to another file.

The creation of a program such as this pay calculator involves several activ-
ities. The first one is the specification of the software. This consists in deter-
mining exactly what the software must do, from the point of view of the user. In
other words, a specification describes the external behavior of the software (not
its internal workings). A good specification should be clear, correct and com-

1

2 CHAPTER 1. ABSTRACTION

plete. It also helps if it is as concise as possible. The specification of a program
normally involves communicating with the client (or with potential users).

Figures 1.1 to 1.3 show the specification of a first version of our pay calcu-
lator. Note, in particular, how the input and output formats are described in
detail.

Note also that this specification is only for a first version of the program. It
is difficult to create a very large program in one shot. It is usually much easier
to develop it gradually by building successfully more complete versions. This is
called incremental (or iterative) development.

Incremental development has several significant advantages. First, the ex-
perience and knowledge gained in building one version of the software can be
used in the building of the following versions. Second, it is possible to get feed-
back from the client on early versions. This helps to verify that the information
obtained from the client during the specification was correct. Third, with in-
cremental development, the creation of the software proceeds as a sequence of
smaller, more manageable projects. Finally, finishing a version of the software,
even an incomplete one, is a satisfying experience that typically generates ex-
citement and increased motivation. We will discuss the software development
process in more detail later in these notes.

After a program (or a version of a program) is specified, it must be designed
and implemented. These activities will be discussed in the following sections.

Study Questions

1.1.1. What is a software specification?

1.1.2. What are four properties of a good software specification? Hint: Four
words that start with the letter c.

1.1. A PAY CALCULATOR 3

OVERVIEW

This program computes what each employee of a company
should be paid for a day of work. The program reads a
file containing start and stop times for each
employee. The program prints the pay amounts to
another file.

DETAILS

The program begins by asking the user for the names of
the input and output files, as follows:

Name of input file: times.txt
Name of output file: report.txt

After reading the name of the input file, the program
attempts to open it. In case of failure, the message

Could not open file.

is printed and the program halts.

After reading the name of the output file, the program
attempts to open it. In case of failure, the message

Could not open output file.

is printed and the program halts.

Figure 1.1: Specification of the pay calculator (part 1 of 3)

4 CHAPTER 1. ABSTRACTION

The input file should contain one line for each
employee. Each line should contain an employee
number, a start time and a stop time. These three
items are separated by blank spaces.

Employee numbers are positive integers. Times are
given on a 24−hour clock (0:00 to 23:59) in the format
h:mm or hh:mm, where each h and m stands for a single
digit.

For example, "17 8:00 16:30" means that employee 17
started working at 8:00 a.m. and stopped working at
4:30 p.m.

The lines in the input file are sorted in increasing
order of employee number.

The program writes to the output file one line for
each employee. Each line consists of an employee
number followed the start time, stop time and pay
amount for that employee. These four items are
separated by a single space. The times are printed in
the same format as in the input file. The pay amount
is printed with a dollar sign and exactly two digits
after the decimal point.

For example, "17 8:00 16:30 $104.00" means that
employee 17 worked from 8:00 a.m. to 4:30 p.m. and
should be paid $104.

Figure 1.2: Specification of the pay calculator (part 2 of 3)

1.2. DESIGN 5

The lines in the output file are sorted in increasing
order of employee number (as in the input file).

All employees are paid $12 per hour. The pay amounts
are computed as exactly as possible.

No other error−checking is performed in this version
of the program.

Figure 1.3: Specification of the pay calculator (part 3 of 3)

1.1.3. What is incremental software development?

1.1.4. What are the benefits of incremental development?

1.2 Design

We now design the pay calculator. Large programs are always designed as a
collection of smaller software components so we will proceed in this way (even
though the pay calculator is not that large). This modular approach has a number
of advantages. One is that it makes the software easier to implement because we
can focus on one component at a time. Modularity also allows the implementa-
tion work to be divided among several programmers. We will discuss modularity
in more detail later in this chapter.

Software design consists mainly of identifying the components of the soft-
ware. We may also decide how to store important data or which algorithms to
use to perform major tasks. In the end, we should have a precise specification for
each component of the software, together with notes on major implementation
details.

6 CHAPTER 1. ABSTRACTION

Components of the program:

o A function that runs the calculator

Implementation notes: Delegates the execution of
the operations on times to separate functions.

o A structure that stores each time as two integers,
one for the hours, one for the minutes.

o Functions for operations on times

− Initializes a time to 99:99.
− Reads a time from an input stream.
− Prints a time to an output stream.
− Computes the difference, in hours, between two

times.

Figure 1.4: First draft of the design of the pay calculator

Figure 1.4 shows an initial draft of the design of the pay calculator. Several
components are identified. The first one is the main function of the program,
the one that controls the entire pay calculator. That function will read the input
file and need to store times. A structure is a good choice.

The function that runs the calculator will need to perform several operations
on times, such as reading a time and computing the difference, in hours, be-
tween two times. Instead of performing these operations itself, the function will
delegate the execution of these operations to a separate set of functions. This is
convenient since it reduces repeated code. But it also separates the details of
the time operations from the overall running of the calculator, leading to more

1.2. DESIGN 7

o const double kPayRate = 12;

o int main()

Runs the calculator. See program spec for details.

Implementation note: Uses Time to store times and
delegates the time operations to the associated
functions.

Figure 1.5: Design of the pay calculator (part 1 of 2)

modularity.

Note that it is not clear at this point if we need an operation that initializes
times. This depends on exactly how the function that runs the calculator will
be coded. For example, if times are read immediately after they are declared,
then it is not really necessary to initialize the times and it is more efficient not
to. Since an initialization operation may be needed and is often useful, we are
including it in the design of our program.

Figures 1.5 and 1.6 show the final design of the pay calculator. It includes a
global constant for the pay rate. This makes the program easier to modify. This
global constant can be considered a minor component of the program.

Each function now has a name, a return value, arguments as well as a precise
description of what it does (from the point of view of the user of the function).
This is all the information needed to be able to use each function. The design
document now fully specifies how the components of the program interact with
each other.

Note that we have grouped together the Time structure and the operations

8 CHAPTER 1. ABSTRACTION

o Time

A structure that represents a time as two
integers, hours and minutes. Times are on a
24−hour clock (0:00 to 23:59).

Operations:

void initialize(Time & t)
Sets t to 99:99.

void read(Time & t, istream & in)
Reads t from in the format h:mm or hh:mm,
where each h and m stands for a single
digit. No error−checking.

void print(const Time & t, ostream & out)
Prints t to out in the format described
for read.

double difference(const Time & t1,
const Time & t2)

Computes the difference, in hours, between
t1 and t2. The difference is positive if
t1 occurs after t2. In other words, the
difference is computed as "t1 − t2".

Figure 1.6: Design of the pay calculator (part 2 of 2)

1.3. NAMES 9

that work on times. It makes sense to view this data and these operations as a
single component of the program since the only purpose of these operations is
to operate on the Time data.

Note also that the functions print and difference receive their Time
arguments by constant reference. This ensures that the arguments cannot be
changed accidentally while at the same time avoiding the copying that occurs
when arguments are passed by value. If an argument consists of more than one
integer, it usually takes less time to pass it by reference (constant or not) than
by value.

Study Questions

1.2.1. In what two ways are modular programs easier to implement?

1.2.2. When should an argument be passed by constant reference?

1.3 Names

In the design of the pay calculator, we had to choose several names of variables
and functions, as well as one for a structure. The most important consideration
is that names should be descriptive. For example, the name of a variable should
describe its value. But there is more to it than that. And it’s very important to
be consistent. In this section, we describe the naming convention we will follow
in these notes.

It is useful to be able to easily distinguish between variable names and names
of types. We will do this by using different formats for variables and types.
Variable names will use what we will call the underscore format: all lowercase
with underscores to separate words. For example, hours and start_time.

10 CHAPTER 1. ABSTRACTION

Names of types, on the other hand, will use the mixed-case format: capitalized
words concatenated without any separating character. For example, Time and
PhoneBookEntry.

Function names normally occur together with arguments so we will reuse the
underscore format for them, as in read and find_entry. In addition, when
the main purpose of a function is to return a value, the name of the function will
be a noun phrase that describes that value, as in difference. On the other
hand, when the main purpose of a function is to perform an action, the name
of the function will be a verb phrase that describes the action, as in read and
print.

One exception to these rules concerns compile-time constants. These are con-
stants whose value is determined before the program runs. The pay calculator
contains one of these constants: kPayRate. For compile-time constants, we
will use the mixed-case format prefixed by a lowercase k. Note that this does not
apply to all constants. For example, the arguments of the function difference
are constant but they are not compile-time constants.

When working with a variable, we usually need to know something about its
type. Ideally, the type of a variable should be clear from its name so we don’t
have to go look for the declaration of the variable. For example, start_time
is clearly a Time and so is t when it occurs in the context of a Time operation.
The constant kPayRate is clearly some sort of number and that’s often all we
need to know.

In the next section, the main function of the pay calculator will use a stream
variable to read from the input file. This variable could be called input_file.
But this would not make it 100% clear that the variable is a stream and not just
the name of the input file. For this reason, we will use the name ifs_input.
The prefix ifs will make it clear that this variable is an input file stream.

This use of prefixes to indicate important information about the value of a

1.4. IMPLEMENTATION 11

variable is a variation of what is sometimes called Hungarian notation [Sim].
We will see other examples of prefixes later in these notes.

In general, there are many different naming conventions that can be fol-
lowed. What is most important is to use some sort of convention and to be
consistent. In particular, when working as a team on a project, it is critical for
every member of the team to follow the same convention. So if you are asked
in an exercise to extend some of the code presented in these notes, you should
follow the convention used in these notes.

Study Questions

1.3.1. What format will we use for the names of variables, types and functions?

1.3.2. What are compile-time constants and what format we will use for their
names?

1.3.3. What is the meaning of the prefix ofs in the name ofs_output?

1.4 Implementation

Now that the pay calculator is specified and designed, we can implement it.
This means writing and testing the code.

Figure 1.7 shows a possible implementation of the Time data type and its
operations. Once the data type and its operations are implemented, it is a good
idea to test this code right away and on its own. The testing of a software
component on its own is called unit testing. Unit testing makes it easier to
locate the sources of errors, especially in large programs. In our example, we
could test the Time code by using the interactive test driver shown in Figure 1.8.
A test driver is a piece of code whose only purpose is to test another component.

12 CHAPTER 1. ABSTRACTION

struct Time
{

int hours;
int minutes;

};

void initialize(Time & t)
{

t.hours = t.minutes = 99;
}

void read(Time & t, istream & in)
{

in >> t.hours;
in.get(); // colon
in>> t.minutes;

}

void print(const Time & t, ostream & out)
{

out << t.hours << ’:’;
if (t.minutes < 10) out << 0;
out << t.minutes;

}

double difference(const Time & t1, const Time & t2)
{

return (t1.hours + t1.minutes/60.0) −
(t2.hours + t2.minutes/60.0);

}

Figure 1.7: The Time data type and its associated functions

1.4. IMPLEMENTATION 13

int main()
{

Time t1, t2;
initialize(t1);
initialize(t2);
cout << "Initial values: ";
print(t1, cout);
cout << ’ ’;
print(t2, cout);
cout << endl;

while (true) {
cout << "Enter two times: ";
read(t1, cin);
read(t2, cin);
cout << "The difference between ";
print(t1, cout);
cout << " and ";
print(t2, cout);
cout << " is " << difference(t2, t1) << endl;

}

return 0;
}

Figure 1.8: A test driver for Time and its operations

14 CHAPTER 1. ABSTRACTION

Note that testing is critically important. No matter how much care we put
into writing correct code, we’re bound to make at least some mistakes. For
example, in the difference function, notice that we divide the minutes by
60.0 and not 60. This is because the minutes are integers and if we divided by
60, another integer, C++would perform integer division, meaning that the result
would be an integer. In other words, the fractional part of the quotient would
be dropped leading 45/60 to evaluate to 0 instead of 0.75, for example. This
would have been a subtle bug that may have gone undetected without carefully
testing the Time operations on a variety of times.

Figures 1.9 and 1.10 show the implementation of the main function of the
pay calculator.

All the code and documentation of this first version of the pay calculator is
available on the course web site under PayCalculator1.

Study Questions

1.4.1. What two activities does the implementation of software involve?

1.4.2. What is unit testing?

1.4.3. What is the main advantages of unit testing?

1.4.4. What is a test driver?

Exercises

1.4.5. Add to the Time data type an operation is_later_than(t1, t2)

that evaluates to true if Time t1 occurs later than Time t2. (Other-
wise, the function evaluates to false.) Hint: Consider carefully how the
arguments should be passed to the function.

1.4. IMPLEMENTATION 15

int main()
{

cout << "Name of input file: ";
string input_file_name;
getline(cin, input_file_name);

ifstream ifs_input(input_file_name);
if (!ifs_input) {

cout << "Could not open file.\n";
return 1;

}

cout << "Name of output file: ";
string output_file_name;
getline(cin, output_file_name);

ofstream ofs_output(output_file_name);
if (!ofs_output) {

cout << "Could not open output file.\n";
return 1;

}

...
}

Figure 1.9: The main function of the pay calculator (part 1 of 2)

16 CHAPTER 1. ABSTRACTION

int main()
{

...

int employee_number;
while (ifs_input >> employee_number) {

Time start_time;
read(start_time, ifs_input);

Time stop_time;
read(stop_time, ifs_input);

double pay =
difference(stop_time, start_time) ∗
kPayRate;

ofs_output << employee_number << ’ ’;
print(start_time, ofs_output);
ofs_output << ’ ’;
print(stop_time, ofs_output);
ofs_output << " $" << fixed << setprecision(2)

<< pay << ’\n’;
}

return 0;
}

Figure 1.10: The main function of the pay calculator (part 2 of 2)

1.4. IMPLEMENTATION 17

1.4.6. Add to Time an operation add_minutes(t, num_minutes) that
adds the number of minutes num_minutes to Time t. The argument
num_minutes is an integer. Allow for the number of minutes to be arbi-
trarily large and even negative. When going forward past 23:59, just cycle
back to 0:00. When going backwards past 0:00, cycle forward to 23:59.

1.4.7. Create a data type Date that consists of dates such as January 22, 2012.
To keep things simple, assume that every month of every year has exactly
30 days. Include the following operations in the data type:

a) Operations initialize(date) and

initialize(date, month, day, year)

The first one initializes date to January 1, 2000. The second one
initializes date to the given month, day and year. The arguments
month, day and year are integers.

b) An operation read(date, in) that reads date from input stream
in. Dates are typed as m/d/y where m, d and y are integers. No
error-checking is performed.

c) An operation print(date, out) that prints date to output
stream out. Dates are printed in numerical format, as in
1/22/2012.

d) An operation print_in_words(date, out) that also prints
date to output stream out but with the month in words, as in
January 22, 2012.

e) An operation add(date, num_days) that advances date by the
number of days num_days. The argument num_days is an inte-
ger. That number could be arbitrarily large and even negative. Hint:

18 CHAPTER 1. ABSTRACTION

This is where the assumption that every month has exactly 30 days
is useful.

1.4.8. Create a data type ThreeDVector that consists of three-dimensional
vector of real numbers, such as (3.5, 2.64,−7). Include the following op-
erations in the data type:

a) Operations initialize(v) and initialize(v, x, y, z)

that initialize ThreeDVector v to (0, 0, 0) and (x, y, z),
respectively.

b) An operation read(v, in) that reads ThreeDVector v from in-
put stream in. Vectors are entered in the format (x, y, z) where
x, y and z are real numbers. No error-checking is performed.

c) An operation print(v, out) that prints ThreeDVector v to
output stream out. Vectors are printed in the format described for
read.

d) An operation add(v1, v2) that returns the sum of
ThreeDVector’s v1 and v2.

1.4.9. Create a data type Fraction that consists of fractions, that is, numbers
of the form a/b where a is an integer and b is a positive integer. Include
the following operations in the data type:

a) Operations

initialize(f)
initialize(f, a)
initialize(f, a, b)

1.4. IMPLEMENTATION 19

that initialize the Fraction f to 0, a and a/b, respectively. The
arguments a and b are integers and b is assumed to be positive. No
error-checking is performed.

b) An operation read(f, in) that reads Fraction f from input
stream in. Fractions are entered in the format a/b where a is an
integer and b is a positive integer. No error-checking is performed.

c) An operation print(f, out) that prints Fraction f to output
stream out. Fractions are printed in the format described for read.
Fractions are not reduced.

d) An operation print_mixed(f, out) that prints Fraction f

to output stream out. Fractions are printed in mixed form n a/b

where n is an integer and a/b is an optional positive proper frac-
tion (one in which the numerator is less than the denominator). For
example, −5 6/8. The fraction is not reduced.

e) Operations add(r, s) and multiply(r, s) that return, respec-
tively, the sum and product of Fraction’s r and s. For example, if
r is 2/3 and s is 3/4, then add(r, s) returns a Fraction whose
value is 17/12 and multiply(r, s) returns 6/12. The returned
fractions are not reduced.

1.4.10. Modify the pay calculator as described below. For each part, revise the
specification, design and implementation of the program. Modify the orig-
inal specification, design and implementation of the program as little as
possible but feel free to create new functions to keep the program as mod-
ular as possible. Follow the same naming convention already used in the
program. For each part of the exercise, which of the program’s compo-
nents did you modify?

20 CHAPTER 1. ABSTRACTION

a) Times are on a 12-hour clock, using a.m. or p.m., as in 8:35 a.m.

or 12:10 p.m. Times should be read and printed in that format.

b) Employees are paid $18 per hour for any amount of time worked be-
yond 8 hours. (Separate the computation of the pay from the function
that runs the calculator by creating a new function that computes the
pay.)

c) The start and stop times are given in separate files. Each line in these
files contains an employee number and a time. In both files, employ-
ees are listed in increasing order of employee number.

d) The program reads another file called wages.txt that lists how
much each employee should be paid for an hour of work. Each line in
this file contains an employee number and an hourly rate. The lines
in the wage file are listed in increasing order of employee number.
Note that employees do not necessarily work every day. Therefore,
some may appear in the wages file but not in the time file (or files).
(But you can assume that every employee that appears in the time
files also appears in the wage file.) Hint: Start with a first version
where you assume that every employee works every day.

1.5 Modularity and Abstraction

As mentioned earlier, large programs are always designed as collections of
smaller software components. In the current version of our pay calculator, all
the components are functions but we will see in the next chapter that software
components can also correspond to data.

In a well-designed modular program, software components should satisfy
the following two properties:

1.5. MODULARITY AND ABSTRACTION 21

1. Cohesion: each component performs one well-defined task.

2. Independence: each component is as independent as possible from the
others.

In the context of software, independence is achieved when changes to one
component do not affect other components. Notice that the definition of mod-
ularity says that components should be as independent as possible from each
other. Independence is a property that can be achieved at various degrees. The
goal is to maximize independence.

Components with a high degree of independence are said to have a low de-
gree of coupling.

Modular programs have a number of advantages. For example, a component
that performs one well-defined task is going to be easier to understand and also
more likely to be useful in another project. This is not true of a component that
performs several unrelated tasks.

Independence, on the other hand, allows us to code, test and modify com-
ponents in isolation. Independence is also necessary for software reuse: a com-
ponent that is highly dependent on a particular context will be difficult to use in
a different one.

Modularity also typically reduces redundant code because the same com-
ponent can be reused for repeated tasks. This helps make programs easier to
understand and easier to modify. Figure 1.11 summarizes the advantages of
modularity.

Independence is usually achieved through information hiding, that is, by
having components hide information from each other. Of course, the term hid-
ing here is somewhat figurative: components aren’t people. We consider that
component A hides information from component B if component B was created
as if some aspect of component A was not known.

22 CHAPTER 1. ABSTRACTION

1. Modular programs are easier to understand because their components per-
form well-defined tasks and can be understood in isolation. In addition,
modular programs contain little redundant code.

2. Modularity facilitates software reuse because components perform well-
defined tasks that may occur elsewhere and because components depend
as little as possible on the context in which they are used.

3. Modular programs are easier to implement because components can be
coded one at a time and the work can be divided among various program-
mers.

4. Modular programs are easier to test because components can be tested in
isolation. This simplifies locating and fixing errors.

5. Modular programs are easier to modify because changes to one component
often only affect that component.

Figure 1.11: Advantages of modularity

1.5. MODULARITY AND ABSTRACTION 23

With functions, a high degree of information hiding and independence is
essentially automatic. For example, consider the function print of the pay
calculator. We know what that function does: it reads a time. We also know
how that function does what it does: those implementation details are shown in
Figure 1.7. What is critical to note is that a function that uses print, such as
main, depends on what print does, not on how it does it.

For example, in the implementation of print, there are other ways in which
we could ensure that the minutes are always printed with two digits. If we
decided to use another method, the implementation of print would need to
be revised but the other functions of the program would not need to change
because they can only depend on what print does, not on how it does it.

Independence between software components is usually achieved by having
the users of a component depend on its purpose (what the component does)
but not on its implementation (how the component does what it does). This is
called abstraction. In the case of functions, we call it procedural abstraction.

Abstraction is one of the most important techniques for the design of modular
programs. Abstraction is automatic with functions but it isn’t with other kinds
of software components such as data types. With those components, abstraction
must be designed into the software. This is why it is important to understand
what abstraction is and how to achieve it. Learning to apply abstraction to data
is one of the main objectives of these notes and the subject of the next chapter.

Notice that abstraction leads to two clearly separate perspectives on each
software component. From the point of view of its users, a component can be
seen as having a purpose but no implementation: it is an abstract component.
This is the outside or public view of the component. This view concerns only what
the component does and it includes the interface of the component, which is the
information needed to communicate with the component, such as the name,
return type and arguments of a function.

24 CHAPTER 1. ABSTRACTION

The developer of a component has a different view: he or she also sees the
implementation of the component. This is the inside or private view. It concerns
how the component does what it does and it includes the inner workings of the
component.

Study Questions

1.5.1. What exactly is a modular program?

1.5.2. Give five distinct advantages of modular programs.

1.5.3. Why does eliminating redundant code make programs easier to (a) un-
derstand and (b) modify?

1.5.4. What is abstraction?

Chapter 2

Data Abstraction

In this chapter, we will learn how to apply abstraction to data. This will allow
us to produce software that is much more modular than what can be achieved
by procedural abstraction alone.

2.1 Introduction

The pay calculator we created in the previous chapter is modular. As explained
in Section 1.5, in that program, independence between components is achieved
through procedural abstraction. For example, the function main depends on
what the function print does but not on how it does it. As a consequence, if
the implementation of print was modified, there would be no need to modify
main.

But now consider the Time data. Each time is currently stored as a pair of
integers, one for the hours and one for the minutes (as shown in Figure 1.7).
Suppose that, for some reason, we decided to change that. For example, suppose
we decided it is better to store each time as a single number of minutes since

25

26 CHAPTER 2. DATA ABSTRACTION

midnight. Under this representation, for example, 8:30 would be stored as 510.
What portions of the pay calculator program would need to be revised?

The definition of Time and the implementation of the Time operations
shown in Figure 1.7 would obviously need to be revised. This is not a surprise
since all of this code depends crucially on exactly how the times are stored. But
what about the main function?

By examining the implementation of main (Figures 1.9 and 1.10), we can
see that there is nothing in this code that depends on the fact that each Time

value is a structure consisting of two integers hours and minutes. In partic-
ular, main never directly accesses those integers. Whenever the function needs
to do anything to a time, it uses one of the four Time operations initialize,
read, print and difference.

This can be illustrated by the component diagram shown in Figure 2.1. In
this diagram, an arrow from one component to another means that the first
component uses the second. Note that the arrow going from main to Time

does not go inside the box that represents the data type. This reflects the fact
that main never directly accesses the Time data (hours and minutes). In
contrast, the arrows going from the operations to Time do reach inside the box.

The fact that main never directly accesses the Time data has an important
consequence: if we changed how times are stored, we would need to revise
the definition of the Time data, as well as the implementation of the Time

operations, but not the main function.

All of this points to a general technique for ensuring that functions that use
a data type do not depend on the storage details of that data type: instead of
having these functions directly access the data, have them work with the data
through a set of operations. Then, if the storage details of the data change, all
that needs to be revised is the definition of the data type and the implementation
of the operations but not the functions that use the data. This can significantly

2.1. INTRODUCTION 27

hours
minutes
(data)

main

(user)

Time

(ops)

Figure 2.1: Component diagram of the pay calculator

28 CHAPTER 2. DATA ABSTRACTION

reduce the amount of work because the number of users of a data type is often
much larger than the number of operations of that data type.

Note that if a program is designed in this way, the functions that use the data
type depend on what that data is (for example, a time on a 24-hour clock) but
not on how that data is stored (with one or two integers, for example). The
functions also depend on what the operations do (read, print, etc.) but not on
how the operations do what they do. What we have here is abstraction applied
to data: data abstraction.

With data abstraction, from the point of view of a user function, a data type
looks as if it has a purpose but no implementation: we call this an abstract data
type (ADT).

Data abstraction plays a major role in the design of modular programs. In
contrast to procedural abstraction, data abstraction is not automatic: it must
be designed into the software. In the remainder of this chapter, we will learn
concepts and techniques related to the design and implementation of ADT’s.

Study Questions

2.1.1. What is an advantage of treating a data type as an ADT?

2.2 Classes to Enforce Data Abstraction

In the last section, we saw that main works with Time values by using the
Time operations instead of accessing the Time data directly. In other words,
main treats the Time data type as an ADT. But nothing prevents main from
directly accessing the Time data, either by accident or by lack of discipline (on
the part of the programmer). In this section, we will learn how to enforce data

2.2. CLASSES TO ENFORCE DATA ABSTRACTION 29

class Time
{

friend void initialize(Time & t);
friend void read(Time & t, istream & in);
friend void print(const Time & t, ostream & out);
friend double difference(const Time & t1,

const Time & t2);

private:
int hours;
int minutes;

};

Figure 2.2: A Time class with friend operations

abstraction by preventing a function such as main from directly accessing the
data of a data type such as Time.

The simplest way of achieving this is to turn Time into a class and declare
that the Time data (which consists of the integers hours and minutes) is
private. This prevents users of the class from directly accessing the data. We
then declare that the Time operations are friends of the class so they have
permission to access the data. The result is shown in Figure 2.2.

Note that we didn’t have to turn Time into a class; we could have left it as
a structure. In fact, the only difference between structures and classes in C++
is that, by default, data is private in a class and public in a structure (meaning
that it can be accessed without restrictions). In these notes, we will follow the
common practice of using structures only when all the data is public.

Some programming languages don’t have provide any notion of privacy. This
can be because they’re older languages, such as C, or because they are meant to

30 CHAPTER 2. DATA ABSTRACTION

be simpler, such as JavaScript. In those languages, data abstraction cannot be
enforced. We must instead rely on programmer discipline.

In this section, we used classes and privacy to enforce data abstraction. But
classes allow us to do more than that, as we will see in the next section.

A version of the pay calculator that uses the class Time of this section can
be found on the course web site under PayCalculator2.0.

Study Questions

2.2.1. What is the main disadvantage of the Time data type presented in the
previous section?

2.2.2. What does it mean for a class to grant friendship to a function?

Exercises

2.2.3. Modify the pay calculator as described below. For each part, revise the
specification, design and implementation of the program. Modify the orig-
inal specification, design and implementation of the program as little as
possible. For each part of the exercise, which of the program’s components
did you modify?

a) Times are stored as a single number of minutes since midnight.

b) Times are read and printed with seconds, in the format h:mm:ss or
hh:mm:ss where each h, m and s stands for a single digit.

2.3. CLASSES TO SUPPORT OOP 31

2.3 Classes to Support Object-Oriented Program-
ming

Classes allow us to enforce data abstraction by preventing users from directly ac-
cessing the data. But classes have another benefit: they support object-oriented
programming (OOP). This section briefly discusses the basic idea and rationale
behind object-oriented programming.

Techniques like modularity and abstraction have been developed to help in
the construction of large programs. Object-oriented programming is another
one of those techniques.

The way most people usually learn to program is called imperative pro-
gramming. In imperative programming, a program is viewed as a sequence of
instructions that tell the computer what to do. Imperative programming works
well with small programs but it is not as effective with large programs.

In object-oriented programming, a program is viewed as a collection of ob-
jects that work together to accomplish the overall goal of the program. Each
object has a certain set of responsibilities. Objects collaborate by requesting ser-
vices from each other. They do so by sending messages to other objects. The
receiver of a message responds by following a predetermined method. The set
of messages understood by an object, as well as the methods used to respond to
those messages, are determined by the type, or class, of the object.

For example, right now, in the pay calculator, we read start_time by call-
ing the appropriate function:

read(start_time, ifs_times);

In a sense, start_time just sits there waiting for us to do things to it.
In contrast, in the object-oriented view of programming, start_time is an

object with responsibilities. When needed, we ask start_time to read itself:

32 CHAPTER 2. DATA ABSTRACTION

start_time.read(ifs_times);

On receiving the readmessage, start_time responds by executing the corre-
sponding method (which would be defined in the class Time). Note how read

illustrates the fact that messages can have arguments.
Here’s another example. To compute the difference between start_time

and stop_time, we currently call a function on both times:

difference(stop_time, start_time)

The object-oriented way is to ask one of the times to tell us the difference be-
tween itself and the other time:

stop_time.minus(start_time)

Note that in this last example, the two Time objects play different roles:
one is the receiver while the other is an argument. (In addition, we changed the
name of the operation from difference to minus because t1.minus(t2)
reads better than t1.difference(t2).)

Figure 2.3 shows the class Time with all the time operations turned into
methods. The methods are declared public so they can be accessed by the users
of Time. (We will see examples of private methods later.) Note that methods
are sometimes called member functions.

In the implementation of the methods, the data members of the receiver are
accessed without specifying an object. For example, in the implementation of
minus, the hours of the receiver are accessed as hours while the hours of t2
are accessed as t2.hours.

One way to make sense of this (and to remember how it works), is to read
a method from the perspective of the receiver, as if the method was telling the
receiver how to respond to the message. So the minus method is telling the

2.3. CLASSES TO SUPPORT OOP 33

class Time
{
public:

void initialize() { hours = minutes = 99; }

void read(istream & in)
{

in >> hours;
in.get(); // colon
in>> minutes;

}

void print(ostream & out)
{

out << hours << ’:’;
if (minutes < 10) out << 0;
out << minutes;

}

double minus(const Time & t2)
{

return (hours + minutes/60.0) −
(t2.hours + t2.minutes/60.0);

}

private:
int hours;
int minutes;

};

Figure 2.3: A class Time with methods

34 CHAPTER 2. DATA ABSTRACTION

receiver to add its hours to its minutes divided by 60, and to subtract from that
t2’s hours and t2’s minutes divided by 60.

Figure 2.4 shows a revised main function that uses the new class Time.
(Only the portion of main that needed to be modified is shown. Compare with
Figure 1.10.) The new design of the program is illustrated by the component
diagram shown in Figure 2.5.

The main advantage of OOP is two-fold. First, it automatically produces
a lot of data abstraction, which results in a high degree of independence be-
tween components. Second, OOP encourages software components to delegate
as many tasks as possible to other components, just as we would when organiz-
ing the members of a group of people in the real world. This leads to a high
degree of cohesion in components, which is the other key aspect of modularity.

Note that in pure OOP, every component of a program is an object. With
languages such as C++ and Java, we normally use a mix of object-oriented and
imperative programming.

A version of the pay calculator that uses the class Time of this section can
be found on the course web site under PayCalculator2.1.

Study Questions

2.3.1. In OOP, how is an object viewed differently from just a piece of data?

2.3.2. What is a message? What is a method? What is a receiver?

2.3.3. What is the ultimate goal of both data abstraction and OOP?

2.3. CLASSES TO SUPPORT OOP 35

int main()
{

...

int employee_number;
while (ifs_input >> employee_number) {

Time start_time;
start_time.read(ifs_input);

Time stop_time;
stop_time.read(ifs_input);

double pay = stop_time.minus(start_time) ∗
kPayRate;

ofs_output << employee_number << ’ ’;
start_time.print(ofs_output);
ofs_output << ’ ’;
stop_time.print(ofs_output);
ofs_output << " $" << fixed << setprecision(2)

<< pay << ’\n’;
}

return 0;
}

Figure 2.4: A revised main function

36 CHAPTER 2. DATA ABSTRACTION

public:
initialize
read
print
minus

private:
hours
minutes

main

(user)

Time

Figure 2.5: An object-oriented version of the pay calculator

Exercises

2.3.4. Turn the operation is_later_than(t1, t2) of Exercise 1.4.5 into a
method. In other words, add to the class Time of this section a method
is_later_than(t2) that evaluates to true if the receiver occurs later
than the Time argument t2.

2.3.5. Turn the operation add_minutes(t, num_minutes) of Exer-
cise 1.4.6 into a method. In other words, add to the class Time of this
section a method add_minutes(num_minutes) that adds the number
of minutes num_minutes to the receiver.

2.3.6. Turn the data type Date of Exercise 1.4.7 into a class. In other words,
each object in this class represents a date such as January 22, 2012. To
keep things simple, assume that every month of every year has exactly 30
days. Include the following methods in the class:

a) Methods initialize() and

2.3. CLASSES TO SUPPORT OOP 37

initialize(month, day, year)

The first one initializes the receiver to January 1, 2000. The second
one initializes the receiver to the given month, day and year. The
arguments month, day and year are integers.

b) A method read(in) that reads the receiver from input stream in.
Dates are typed as m/d/y where m, d and y are integers. No error-
checking is performed.

c) A method print(out) that prints the receiver to output stream
out. Dates are printed in numerical format, as in 1/22/2012.

d) A method print_in_words(out) that also prints the receiver to
output stream out but with the month in words, as in January

22, 2012.

e) A method add(num_days) that advances the receiver by the num-
ber of days num_days. The argument num_days is an integer. That
number could be arbitrarily large and even negative.

2.3.7. Turn the data type ThreeDVector of Exercise 1.4.8 into a class. Each
object in this class represents a three-dimensional vector of real numbers,
such as (3.5, 2.64,−7). Include the following methods in the class:

a) Methods initialize() and initialize(x, y, z) that ini-
tialize the receiver to (0, 0, 0) and (x, y, z), respectively.

b) A method read(in) that reads the receiver from input stream in.
Vectors are entered in the format (x, y, z) where x, y and z are
real numbers. No error-checking is performed.

c) A method print(out) that prints the receiver to output stream
out. Vectors are printed in the format described for read.

38 CHAPTER 2. DATA ABSTRACTION

d) A method add(v2) that returns the sum of the receiver and
ThreeDVector v2.

2.3.8. Turn the data type Fraction of Exercise 1.4.9 into a class. Each object
in this class represents a number of the form a/b where a is an integer
and b is a positive integer. Include the following methods in the class:

a) Methods

initialize()
initialize(a)
initialize(a, b)

that initialize the receiver to 0, a and a/b, respectively. The argu-
ments a and b are integers and b is assumed to be positive. No error-
checking is performed.

b) A method read(in) that reads the receiver from input stream in.
Fractions are entered in the format a/b where a is an integer and b
is a positive integer. No error-checking is performed.

c) A method print(out) that prints the receiver to output stream
out. Fractions are printed in the format described for read. Frac-
tions are not reduced.

d) A method printMixed(out) that prints the receiver to output
stream out. Fractions are printed in mixed form n a/b where n

is an integer and a/b is an optional positive proper fraction (one in
which the numerator is less than the denominator). For example,
−5 6/8. The fraction is not reduced.

2.4. CONSTANT METHODS 39

void println(const Time & t, ostream & out)
{

t.print(out);
out << ’\n’;

}

Figure 2.6: The println function

e) Methods add(s) and multiply(s) that return, respectively, the
sum and product of the receiver and Fraction s. For exam-
ple, if the receiver r is 2/3 and s is 3/4, then r.add(s) returns
a Fraction whose value is 17/12 and r.multiply(s) returns
6/12. The returned fractions are not reduced.

2.4 Constant Methods

We now have the basic tools needed for implementing ADT’s and for program-
ming in an object-oriented way. In particular, we know about classes, privacy,
methods and friendship. In the remaining sections of this chapter, we will refine
these tools. In particular, we will consider several improvements to our class
Time.

We begin in this section by addressing a major flaw of Time. Consider the
function shown in Figure 2.6. This function prints a time and then moves to the
next line. The code looks good but it won’t compile because the Time argument
of println is declared constant and the compiler will complain that the method
print may attempt to change its receiver.

The solution is to declare the method print to be a constant method.
This is done by adding the keyword const right after the argument list of the

40 CHAPTER 2. DATA ABSTRACTION

method:

void print(ostream & out) const

This essentially declares that the receiver of the print method is constant and
cannot be changed by the method.

This has two consequences. First, the compiler will not allow print to
change its receiver. Second, the compiler will allow print to be used on a con-
stant Time. In general, a constant method is not allowed to change its receiver
and only messages corresponding to constant methods can be sent to constant
objects.

Variables should be declared constant whenever possible because this helps
to prevent errors. As a consequence, methods should be declared constant when-
ever possible so they can be used on constant objects. For example, in our class
Time, the method minus should also be declared constant:

double minus(const Time & t2) const

Source code and documentation for a revised version of the class Time is
available on the course web site under Time1.0.

Study Questions

2.4.1. How do you prevent a method from modifying its receiver?

Exercises

2.4.2. Which of the new Time methods described in the exercises of the previ-
ous section should be declared constant?

2.4.3. Consider the new classes described in the exercises of the previous sec-
tion. In each of these classes, which methods should be constant?

2.5. INLINE METHODS 41

2.5 Inline Methods

The methods of our class Time are currently declared and implemented inside
the class declaration, as shown in Figure 2.3. This has the effect of making them
inline methods.

Compilers treat inline functions differently from ordinary functions. When
a compiler sees a call to an inline function, it may remove the function call and
replace it by the body of the function. In principle, this should speed up the
program because it avoids the extra work involved in calling a function. But
it may also increase the size of the program and very large programs can run
more slowly because they can’t be stored entirely within the fastest portions of
a computer’s memory.

The only sure way to know if it’s better to make a function inline is to run
tests. But this is often impractical so several rules of thumb have been proposed.
One is to make a function inline if it consists of no more than ten lines of code
and includes no loops or switch statements [Goo].

The methods of our class Time are all short and simple enough that it makes
sense to make them inline. But what if we decided that a method should not
be inline? How could we achieve this? We can make a method not be inline by
declaring the method inside the class declaration but implementing it outside.
For example, Figure 2.7 shows a version of Time in which the method print

is no longer inline. Note that in the implementation of the method, its name is
preceded by the name of the class: Time::print. This tells the compiler that
print is a method that belongs to the class Time and not a standalone function
(a function that is not a method of any class).

Inline methods can make a class declaration become crowded. The style pre-
ferred by many C++ programmers is for a class declaration to be mainly a list
of methods and variable declarations. Long methods are usually implemented

42 CHAPTER 2. DATA ABSTRACTION

class Time
{
public:

void print(ostream & out) const;
...
};

void Time::print(ostream & out) const
{

out << hours << ’:’;
if (minutes < 10) out << 0;
out << minutes;

}

Figure 2.7: A non-inline version of the print method

outside of the class declaration. This is illustrated in Figure 2.8 where methods
longer than a single line are now implemented outside the class declaration.
Note that these methods are still inline because their implementations are pre-
ceded by the keyword inline.

So methods can be made inline by implementing them within the class dec-
laration, or by implementing them outside and using the keyword inline. In
the case of standalone functions, the inline keyword is the only option, as
shown in Figure 2.9.

Source code for the revised class Time of Figure 2.8 is available on the course
web site under Time1.1.

Study Questions

2.5.1. What is special about an inline function?

2.5. INLINE METHODS 43

class Time
{
public:

void initialize() { hours = minutes = 99; }
void read(istream & in);
void print(ostream & out) const;
double minus(const Time & t2) const;

private:
int hours, minutes;

};

inline void Time::read(istream & in)
{

...
}

inline void Time::print(ostream & out) const
{

...
}

inline double Time::minus(const Time & t2) const
{

...
}

Figure 2.8: The class Time with some methods implemented outside the class
declaration

44 CHAPTER 2. DATA ABSTRACTION

inline void println(const Time & t, ostream & out)
{

t.print(out);
out << ’\n’;

}

Figure 2.9: An inline standalone function

2.5.2. What are two ways to make a method inline?

Exercises

2.5.3. Revise the classes in the exercises of the previous sections by moving out
of the class declaration the implementation of all the methods that are
longer than a single line. But make sure short methods stay inline. Use
the rule of thumb given in this section.

2.6 Constructors

A common programming mistake is to create a variable but forget to set it. This
error can be difficult to detect because, during testing, the variable may get a
random initial value that happens to be the right value, or something close to
it. But later, when the program is used in a real-life situation, the error could
manifest itself, with possibly catastrophic consequences.

One way to avoid this problem is to get into the habit of always initializing a
variable as soon as it is created. For example, if a counter count is needed for
a loop, it is better to set it to its initial value right away, as in

int count = 0;

2.6. CONSTRUCTORS 45

int employee_number;
while (ifs_input >> employee_number) {

Time start_time;
start_time.read(ifs_input);

Time stop_time;
stop_time.read(ifs_input);

...
}

Figure 2.10: A portion of main

This ensures that we don’t forget to set the counter later.

Another example comes from the pay calculator. As shown in Figure 2.10, the
variables employee_number, start_time and stop_time are currently
not initialized when they are declared because their values are immediately set
on the following line. This is what happens when we follow the practice of
declaring variables just before their first use.

But another approach is to declare variables at the beginning of the block
of code where they will be used. In our case, this would mean declaring
start_time and stop_time at the beginning of the loop. In addition, since
employee_number must be declared outside of the loop, we could declare
those three variables together, just before the loop. This is reasonable because
those three variables are closely related: they correspond to the data that must
be read from each line of the input file. The result is shown in Figure 2.11.

But now, those variables are not set immediately after they are declared. So
it is safer to initialize them as shown in Figure 2.12.

Note that it would be more convenient and even safer if variables were ini-

46 CHAPTER 2. DATA ABSTRACTION

int employee_number;
Time start_time;
Time stop_time;

while (ifs_input >> employee_number) {
start_time.read(ifs_input);
stop_time.read(ifs_input);

...
}

Figure 2.11: The variables start_time and stop_time declared before the
loop

int employee_number = −1;
Time start_time;
start_time.initialize();
Time stop_time;
stop_time.initialize();

while (ifs_input >> employee_number) {
start_time.read(ifs_input);
stop_time.read(ifs_input);

...
}

Figure 2.12: Initialization of employee_number, start_time and
stop_time

2.6. CONSTRUCTORS 47

class Time
{
public:

Time() : hours(99), minutes(99) {}
Time(int h) : hours(h), minutes(0) {}
Time(int h, int m) : hours(h), minutes(m) {}

void read(istream & in);
void print(ostream & out) const;
double minus(const Time & t2) const;

private:
int hours;
int minutes;

};

Figure 2.13: The class Time with three constructors

tialized automatically as soon as they are created. In C++, this is possible in the
case of objects.

Every time an object is created, it is always automatically initialized by a
special method called a constructor. For example, Figure 2.13 shows the class
Time with three constructors added. Constructors have the same name as the
class but they have no return value (not even void). Constructors can have
arguments.

The constructor with no arguments is called the default constructor. A
declaration such as

Time start_time;

uses the default constructor. The default constructor of class Time simply does

48 CHAPTER 2. DATA ABSTRACTION

what the initialize method used to do: it initializes the time to the clearly
invalid value 99:99. The object produced by the default constructor can be called
the default object of the class.

The default constructor initializes the hours and minutes of the time by
using two initializers:

Time() : hours(99), minutes(99) {}

An alternative would have been to use assignment statements in the body of the
constructor:

Time()
{

hours = 99;
minutes = 99;

}

In the case of data members with a primitive type, such as int, double, char
and bool, this makes no difference. But if the class had included an object as a
data member, a string, for example, then that object would have been initial-
ized by its default constructor before being reassigned in the body of the Time
constructor. The initializer version of the Time constructor is more efficient be-
cause its initializers override the automatic initialization of the data members.
In other words, using initializers in constructors ensures that data members are
initialized only once.

The second and third constructors can be used to initialize Time objects to
particular values. The second constructor is used in a declaration such as

Time noon(12);

where it initializes the time to 12:00. The third constructor is used in a declara-
tion such as

2.6. CONSTRUCTORS 49

Time wake_up_time(6,15);

where it initializes the time to 6:15. Notice how the arguments of these con-
structors are provided as part of the declaration of the times.

Constructors can also be called directly to create and initialize objects. For
example, suppose that we want to change wake_up_time to 6:30. We can do
this as follows:

Time six_thirty(6,30);
wake_up_time = six_thirty;

But we can also do this more concisely:

wake_up_time = Time(6,30);

This creates a temporary Time object, initializes it to 6:30 by using the third
constructor, and then copies the new Time object to wake_up_time.

The second constructor can be used in the same way. For example,

wake_up_time = Time(6);

will set wake_up_time to 6:00.
Note that in this last example, the second constructor is being used essentially

to convert the integer 6 into the Time object 6:00. We can achieve the same
effect by simply writing

wake_up_time = 6;

What happens here is that the compiler is not able to find an assignment operator
that can copy an integer to a Time. But it finds one that copies a Time to a Time,
so it looks for a way to convert an integer into a Time. The second constructor

50 CHAPTER 2. DATA ABSTRACTION

of the class provides a way to perform this conversion. This is called an implicit
conversion because it was not explicitly requested by the programmer.

Implicit conversions are performed whenever the compiler expects an object
of class A, a value of type B is provided instead and class A contains a one-
argument constructor that can perform the conversion by taking that value of
type B as argument.

Note that a Time variable can be declared and initialized by the second
constructor with either the notation

Time noon(12);

or

Time noon = 12;

This equal sign is not the assignment operator but just another way of initializing
an object.

If you do not include any constructor in a class, then the compiler will auto-
matically generate a default constructor. This compiler-generated default con-
structor is usually not what is needed. If you add any constructor to a class but
not a default constructor, then the compiler will not generate a default construc-
tor and the class will be left without one. In that case, you would not be able to
create arrays of objects of that class since objects in an array are automatically
initialized by the default constructor. Therefore, you usually need to include a
default constructor in all your classes.

The implementations of the three Time constructors have most of their code
in common. It is possible to eliminate this repetition by having the first two
constructors delegate their work to the third one as follows:

Time() : Time(99, 99) {}
Time(int h) : Time(h, 0) {}
Time(int h, int m) : hours(h), minutes(m) {}

2.6. CONSTRUCTORS 51

We then say that the first two constructors are delegating constructors.
We can simplify the constructors a bit more by using in-class initializers.

The idea is to provide an initial value with the declaration of the data members:

int hours = 99;
int minutes = 99;

The constructors can then be implemented as follows:

Time() {}
Time(int h) : Time(h, 0) {}
Time(int h, int m) : hours(h), minutes(m) {}

Because of the in-class initializers, the default constructor has nothing left to
do. The second constructor delegates to the third one, as before, while the third
constructor uses initializers to override the in-class initializers and set the data
members to other values.

In-class initializers are particularly useful when a class has a large number
of constructors that set a data member to the same value. This is not the case
with our class Time.

In fact, it is debatable whether in-class initializers are a good idea in the case
of Time. One advantage of in-class initializers is that they follow more closely
the principle that variables should be initialized as soon as they are declared.
But a disadvantage is that the initialization code is split between two different
locations: the data member declarations and the constructors. This may make
the class harder to understand.

The version of Time with constructors is available on the course web site
under Time1.2.

52 CHAPTER 2. DATA ABSTRACTION

Study Questions

2.6.1. Why is it good practice to initialize a variable as soon as it is declared?

2.6.2. What is a constructor?

2.6.3. What is a default constructor?

2.6.4. When does the compiler perform an implicit conversion?

2.6.5. What type of constructor is used to perform implicit conversions?

2.6.6. When precisely does the compiler automatically generate a default con-
structor for a class?

2.6.7. What is an initializer?

2.6.8. What is an advantage of using initializers?

2.6.9. What is a delegating constructor?

2.6.10. What is an advantage of using delegating constructors?

2.6.11. What is an in-class initializer?

2.6.12. What is an advantage and a disadvantage of using in-class initializers?

Exercises

2.6.13. Revise the classes of the exercises of Section 2.3 by turning their
initializemethods into constructors. Use delegating constructors and
in-class initializers as appropriate.

2.7. GET AND SET METHODS 53

2.7 Get and Set Methods

Our class Time provides all the functionality we need for the pay calculator. But
the range of operations that can be performed on these times is fairly limited.

For example, imagine that later, perhaps in another program, we needed to
print times with an h instead of a colon, as in 8h30. (This is how it’s done
in French, for example.) One option would be to modify the class to include a
new print_with_hmethod. But this requires “reopening” that class: learning
again how it works and running the risk of breaking the parts of it that already
work. (This wouldn’t be much of an issue with a simple class like Time, but
classes can be much larger and much more complex.)

Another option is for the designers of the original class to include so-called
get methods in the class. For example, Figure 2.14 shows a version of Time
with two get methods called hours and minutes. Then, without modifying
the class, these methods allow us to write a print_with_h function that prints
times with an h instead of a colon, as shown in in Figure 2.15.

These methods are called get methods because they allow us to retrieve val-
ues associated with their receivers. In fact, names such as get_hours and
get_minutes are common alternatives to the simpler hours and minutes.
In these notes, as explained in Section 1.3, we will normally use noun phrases
as names for methods whose main purpose is to return a value.

Note that we changed the names of the data members of the class from
hours and minutes to hours_ and minutes_. This is because in a class,
a data member and a method with no arguments cannot share the same name.
Adding an underscore to the names of all the data members allows those names
to be used for get methods. It also makes it easy to recognize those data mem-
bers within the implementation of the methods. We will follow this convention
from now on.

54 CHAPTER 2. DATA ABSTRACTION

class Time
{
public:

...

int hours() const { return hours_; }
int minutes() const { return minutes_; }

void set_hours(int new_hours)
{

hours_ = new_hours;
}
void set_minutes(int new_minutes)
{

minutes_ = new_minutes;
}

void set(int new_hours, int new_minutes = 0);

private:
int hours_;
int minutes_;

};

inline void Time::set(int new_hours, int new_minutes)
{

hours_ = new_hours;
minutes_ = new_minutes;

}

Figure 2.14: Get and set functions for the class Time

2.7. GET AND SET METHODS 55

void print_with_h(const Time & t, ostream & out)
{

out << t.hours() << ’h’;
if (t.minutes() < 10) out << ’0’;
out << t.minutes();

}

Figure 2.15: The function print_with_h

Now, suppose that t is a Time and that we need to change its minutes to m.
With the class of the previous section, we could do this as follows:

t = Time(t.hours(), m);

But the class of Figure 2.14 includes a set_minutes method that allows us to
do this more conveniently and more efficiently:

t.set_minutes(m);

A similar set_hours method is also included. Not surprisingly, methods such
as set_minutes and set_hours are called set methods.

We might also need to change both the hours and minutes of t to, say, h and
m. With the class of the previous section, this could be done as follows:

t = Time(h, m);

We could now use the set methods:

t.set_hours(m);
t.set_minutes(h);

But even more convenient and efficient is to use the set method included in
the class of Figure 2.14:

56 CHAPTER 2. DATA ABSTRACTION

t.set(h, m);

Note that the declaration of the set method specifies that the value 0 is to
be used in case the second argument is missing. This default value is called a
default argument. This allows us to set t to h:00 by simply doing

t.set(h);

Default values can only be specified for the rightmost arguments of a func-
tion. When the function is called, the values that are given as arguments are
matched to the arguments of the function from left to right. Default values are
then used in place of the missing arguments. A function can specify default
values for all its arguments.

Note that a default argument could be used to combine the second and third
constructors of our class:

Time(int h, int m = 0) : hours_(h), minutes_(m) {}

Get and set methods are a standard way of adding flexibility to a class be-
cause they allow users to perform operations that weren’t anticipated by the
designers of the class. This increases the chances that the class will be useful in
other projects, which is good.

On the negative side, get and set methods increase dependence between a
class and its users. For example, the simplest way to print a time is to use the
print method as in

t.print(out);

But now that Time has get and set methods, nothing prevents us from printing
times ourselves:

2.7. GET AND SET METHODS 57

out << t.hours() << ’:’;
if (t.minutes() < 10) out << ’0’;
out << t.minutes();

This code is obviously less readable and less convenient to write. But it is also
much more dependent on the details of Time. For example, if the colon was
changed to an h or if seconds were added to times, every occurrence of this
code would need to be revised. None of this work is needed if we always use
the print method.

Therefore, as a general rule, it is much better for users of a class not to
use get and set methods to perform a task that can be entirely performed by
a method already included in the class. This is an example of the design strat-
egy that software components should delegate as much work as possible to other
components. This usually leads to greater independence between software com-
ponents.

You may be worried that get and set methods reveal too much about the
implementation of the class. For example, in the case of Time, if we’re going
to include get and set methods for hours and minutes, then why not just make
the data members hours and minutes public? But note that users of Time
already know that times consist of hours and minutes. That’s part of what times
are. But that’s not necessarily how times are stored. For example, we could store
times as a single number of minutes since midnight. That wouldn’t change the
fact that times consist of hours and minutes. Even if Timewas still implemented
in this way, we could still include the get and set methods for hours and min-
utes (even though the implementation of those methods would be a little more
complicated).

The version of the class Time with get and set methods, as well as a test
driver that includes the print_with_h function, is available on the course
web site under Time1.3.

58 CHAPTER 2. DATA ABSTRACTION

Study Questions

2.7.1. Why is it a bad idea for a function to use the get methods instead of the
print method to print a time?

2.7.2. What is a default argument?

Exercises

2.7.3. Without modifying the class Time, write a function that takes a Time

object as argument and prints the time in the 12-hour format using “a.m.”
and “p.m.” This function should be a stand-alone function, not a method
of the class Time. Do not use friendship declarations.

2.7.4. Modify the implementation of the class Time so that times are stored as
a single number of minutes. Do this without changing the interface of the
class so that users of Time do not need to be revised. (In particular, the
class should continue to have the get and set methods we introduced in
this section.)

2.7.5. Add to the class Date of Exercise 2.3.6 methods
set(month, day, year) and set(month, day) that set the
date to the given month, day and year. The second method leaves the
year unchanged. The arguments are integers. Use default arguments as
appropriate.

2.7.6. Add the following methods to the class ThreeDVector of Exer-
cise 2.3.7:

a) A method set(x, y, z) that sets the vector to (x, y, z).

2.8. OPERATORS 59

b) Methods x(), y() and z() that return, respectively, the first, second
and third components of the vector.

2.7.7. Add the following methods to the class Fraction of Exercise 2.3.8:

a) Methods set(a, b) and set(a) that set the fraction to a/b and a,
respectively. The arguments are integers. Assume that b is positive.
Use default arguments as appropriate.

b) Methods numerator() and denominator() that return, respec-
tively, the numerator and denominator of the fraction.

2.8 Operators

In the pay calculator, we use the minus method of class Time to compute the
difference between two times as follows:

stop_time.minus(start_time)

But the following code is more natural:

stop_time − start_time

And because it is more natural, it easier to remember, easier to write and easier
to understand. The essential difference is that the more natural code uses an
operator instead of a method.

In C++, we can extend existing operators so they work with new argument
types. This done by creating a new version of the operator. This is called oper-
ator overloading because it adds new meaning to an existing operator.

To overload the subtraction operator for times, we simply need to change
the name of the method from minus to operator−, as shown in Figure 2.16.
When the compiler sees an expression such as

60 CHAPTER 2. DATA ABSTRACTION

double operator−(const Time & t2) const
{

return (hours_ + minutes_/60.0) −
(t2.hours_ + t2.minutes_/60.0);

}

Figure 2.16: A subtraction operator for Time

stop_time − start_time

it will interpret it as

stop_time.operator−(start_time)

and the desired result will be achieved.
As explained earlier, the compiler can use the one-argument constructor of

class Time to perform implicit conversions from integers to times. So, for exam-
ple, the code t − 8 would be perfectly valid and result in the time 8:00 being
subtracted from t.

On the other hand, it is not possible to write 12 − t since the left operand
of the operator is its receiver, not an argument. Implicit conversions are not
performed on receivers.

To get implicit conversions on both operands of the subtraction operator, we
must redesign the operator so that both operands are arguments. This can be
done by taking the operator out of the class and turning it into a stand-alone
function with two arguments, as shown in Figure 2.17. This is possible because
an expression such as

stop_time − start_time

can also be interpreted by the compiler as

2.8. OPERATORS 61

inline double operator−(const Time & t1,
const Time & t2)

{
return (t1.hours() + t1.minutes()/60.0) −

(t2.hours() + t2.minutes()/60.0);
}

Figure 2.17: The subtraction operator as a standalone function

operator−(stop_time, start_time)

Note that if our class didn’t have get methods, we would simply make the op-
erator a friend of the class so we could directly access the private data members
hours_ and minutes_.

We can also overload the input (or stream extraction) operator >> so that
instead of writing

start_time.read(ifs_report)

we can write

ifs_report >> start_time

Just as we do with integers, characters and strings.
The overloading of the input operator involves a couple of particular issues.

One has to do with how the compiler interprets code such as

in >> t

Just as in the case of the subtraction operator, there are two possibilities:

1. in.operator>>(t)

62 CHAPTER 2. DATA ABSTRACTION

inline istream & operator>>(istream & in, Time & t)
{

in >> t.hours_;
in.get(); // colon
in >> t.minutes_;
return in;

}

Figure 2.18: An input operator for Time

2. operator>>(in, t)

The first interpretation corresponds to overloading the operator by adding
the method operator>> to the class istream, which is the class of the stan-
dard input stream cin as well as all input file streams.1 But istream is a
library class and we cannot modify it.

Now, if the compiler could interpret in >> t as

t.operator>>(in)

we would be all set: we could overload the operator by adding the method
operator>> to our class Time. But the C++ compiler does not interpret
in >> t in this way.

So we are left with the second interpretation, which corresponds to over-
loading the operator by creating a standalone function with two arguments, as
shown in Figure 2.18.

Note that here we decided to make the operator a friend of the class so we
can directly access its private data members. The alternative would have been to
use the set methods as shown in Figure 2.19. This would have been less efficient

1Strictly speaking, input file streams are of class ifstream. We will say more about this in
the next chapter when we take a look at I/O stream classes.

2.8. OPERATORS 63

inline istream & operator>>(istream & in, Time & t)
{

int new_hours;
in >> new_hours;
t.set_hours(new_hours);

in.get(); // colon

int new_minutes;
in >> new_minutes;
t.set_minutes(new_minutes);

return in;
}

Figure 2.19: A less efficient input operator

because it requires storing each number twice.
Note that the input operator returns the stream it receives as argument.

There are two reasons for this.
First, that return value indicates whether the input operation succeeded:

when used in a conditional statement, a stream variable evaluates to true if
the last operation succeeded and to false if the last operation failed. For ex-
ample, the following loop reads all the times contained in the file associated
with the stream variable f:

while (f >> t) { cout << t << endl; }

This can be read as follows:

While t can be read from f, print t to the screen.

64 CHAPTER 2. DATA ABSTRACTION

What actually happens is that as long as the reading operation succeeds in read-
ing a time from the file, the expression f >> t evaluates to true and the loop
continues. But after the last time is read from the file, the next reading operation
fails, f >> t evaluates to false and the loop terminates.

The second reason why the input operator returns the stream has to do with
chains of reading operations. In C++, instead of having to write

in >> t1;
in >> t2;

it is normally possible to write the more convenient and more readable

in >> t1 >> t2;

Such a statement is actually executed as a sequence of nested function calls:

operator>>(operator>>(in, t1), t2);

For this to work, the first call to the input operator must return the stream so it
becomes the first argument of the second call to the operator.

Note that the operator must return a reference to the stream, not a copy of
the stream. This allows the calling function to access the original stream instead
of copy of the stream. This is done for the same reason that stream arguments
are passed by reference as arguments: all I/O operations to a single file should
normally be performed through a single stream variable, not various copies of
it. We will see other examples of functions that return references later in these
notes.

The output (or stream insertion) operator << can be overloaded in a way
similar to the input operator, as shown in Figure 2.20.

Figure 2.21 shows a revision of the main function of the pay calculator that
uses the latest version of our class Time. By comparing with the previous version

2.8. OPERATORS 65

inline ostream & operator<<(ostream & out,
const Time & t)

{
out << t.hours() << ’:’;
if (t.minutes() < 10) out << ’0’;
out << t.minutes();
return out;

}

Figure 2.20: An output operator for Time

(see Figure 2.4), we see that the default constructor and operators of the class
allow us to write more natural code, that is, code that reads better and is easier
to both write and understand.

The latest version of the class Time is available on the course web site under
Time1.4. A version of the pay calculator that uses this class is available under
PayCalculator2.2.

Study Questions

2.8.1. What is operator overloading?

2.8.2. What is the advantage of declaring an operator such as the subtraction
operator as a stand-alone function instead of a method?

2.8.3. Why do the input and output operators have to be declared as stand-alone
functions instead of methods?

2.8.4. Why do the input and output operators return the stream?

66 CHAPTER 2. DATA ABSTRACTION

int main()
{

...

int employee_number = −1;
Time start_time, stop_time;

while (ifs_input >> employee_number) {
ifs_input >> start_time >> stop_time;

double pay = (stop_time − start_time) ∗
kPayRate;

ofs_output << employee_number << ’ ’
<< start_time << ’ ’ << stop_time
<< " $" << fixed << setprecision(2)
<< pay << ’\n’;

}

return 0;
}

Figure 2.21: A revised main function that uses constructors and operators

2.9. COMPILING LARGE PROGRAMS 67

Exercises

2.8.5. Transform the is_later_than method that you wrote for Exer-
cise 2.3.4 into the less than operator <. Is it better to define it inside
or outside the class?

2.8.6. Add an equality testing operator == to the class Time.

2.8.7. Add the operators <<, >> and += to the class Date of Exercise 2.3.6.
They should behave just like the methods read, print and add, respec-
tively.

2.8.8. Add the operators <<, >> and + to the class ThreeDVector of Exer-
cise 2.3.7. They should behave just like the methods read, print and
add, respectively.

2.8.9. Add the operators + and ∗ to the class Fraction of Exercise 2.3.8. They
should behave just like the methods plus and times, respectively.

2.8.10. Add the operators < and == to the class Fraction of Exercise 2.3.8.
Two fractions such as 2/3 and 8/12 should be considered equal.

2.9 Compiling Large Programs

All the source code of our pay calculator program is currently contained in a
single file. This implies that to work on a component in isolation, we have to
copy its code out of the program and then back into it. This is inconvenient and
prone to errors.

Having all the code in a single file also implies that the entire program needs
to be recompiled every time any part of the code is changed. Since compiling a

68 CHAPTER 2. DATA ABSTRACTION

large program can take a significant amount of time, this is also inconvenient,
especially during debugging when often only small changes are made to the
program between recompilations.

An alternative is to organize the program so that each component is con-
tained in its own file (or files) and then to recompile only those files that need
to be recompiled.

The standard way of doing this is to separate each component into a header
file and an implementation file. The header file contains the declarations associ-
ated with the component, that is, all the code that the compiler needs in order to
compile the code that uses the component. This normally consists of global con-
stants, class declarations, function declarations, as well as the implementation
of all inline methods and functions.

The implementation file contains the rest of the code. This normally consists
of the implementation of the non-inline methods and functions. The names of
these files normally end with the extensions h and cpp, respectively.

For example, we can reorganize the pay calculator into three files, as follows:

1. Time.h: the declaration of the class Time and the implementation of all
the inline Time operations (whether methods or standalone functions),
as shown in Figure 2.22.

2. Time.cpp: the implementation of any Time operation not already im-
plemented in the header file. (There are none in our case.)

3. main.cpp: the global constant kPayRate and the main function.

Note that the main function does not need to be split into header and imple-
mentation files because that function will not be used by any other component.

Each implementation file should include (#include) the corresponding
header file, as well as library files and other header files that are needed. For ex-

2.9. COMPILING LARGE PROGRAMS 69

#ifndef _Time_h_
#define _Time_h_

#include <iostream>

class Time
{
public:

friend std::istream & operator>>(std::istream & in,
Time & t);

... // declaration of the methods

private:
int hours_;
int minutes_;

};

... // implementation of the inline operations

#endif

Figure 2.22: The header file Time.h

70 CHAPTER 2. DATA ABSTRACTION

ample, Time.cpp includes Time.h while main.cpp includes several library
files as well as Time.h.

Each header file should include all the necessary library and header files. For
example, Time.h includes iostream (see Figure 2.22).

Note that no global using declarations are used in Time.h. Instead,
the long form std::istream is used to access istream. This is because
header files such as Time.h will be included in the source code of other com-
ponents and it’s best to avoid “polluting” the namespaces of those compo-
nents. Therefore, in a header file, all using declarations should be local to
individual functions. This is not an issue with implementation files, which is
why main.cpp contains declarations such as using std::ifstream and
using std::cout.

With a compiler that is part of an integrated development environment (IDE),2

we normally create a project, add to it all the source files and then just click a
button to have the IDE compile the project. When recompiling a program, the
IDE will automatically compile only the files that actually need to be compiled.
As mentioned before, with a large program, this can take much less time than
recompiling the entire program.

With a console-type compiler such as g++ for Unix and Linux, the entire
program can be compiled by compiling all the cpp files as follows:

g++ ∗.cpp

Afterwards, the process of recompiling only those files that are needed is usually
managed with the assistance of the make utility. This will be discussed briefly in
the next section.

2Examples of IDE’s are Code::Blocks and Eclipse for Windows, Linux and Mac OS X, Bloodshed
Dev-C++ and Microsoft Visual C++ for Windows, and Anjuta for Linux. As of January 2012,
Code::Blocks, Eclipse, Dev-C++, Anjuta and the Express Edition of Visual C++were all available
for free.

2.9. COMPILING LARGE PROGRAMS 71

Now suppose that another component is added to the pay calculator and that
this new component is used by both the main function and the class Time. The
header file of that new component would be included in both main.cpp and
Time.h. But this would cause problems because Time.h is already included
in main.cpp: when main.cpp is compiled, the compiler will read the header
file of the new component twice and will complain that the new component is
declared more than once.

A solution is to remember which header files are already included in which
other header files. In a large program, this would be difficult to manage and
prone to errors.

A simpler solution is to use the trick shown in Figure 2.22. At the beginning
of this header file, we test to see if the symbol _Time_h_ is defined. If not, we
define the symbol and proceed with the rest of the file. The second time the file
is visited, the symbol will be defined, the test will fail and the contents of the
file will be skipped all the way to the #endif directive at the very bottom. This
prevents the contents of the file from being read more than once.

It is a good idea to use this trick systematically in all header files. Each header
file must use a unique symbol name. A scheme based on a modification of the
file name works well. For example, for a file named component.h, use the
symbol _component_h_.

A version of the pay calculator organized with header and implementa-
tion files for separate compilation is available on the course web site under
PayCalculator2.3.

Study Questions

2.9.1. Why is the setup described in this section especially useful during debug-
ging?

72 CHAPTER 2. DATA ABSTRACTION

2.9.2. Why is it better not to use global using declarations in a header file?

Exercises

2.9.3. By following the guidelines given in this section, reorganize the code of
the classes you created for the exercises of this chapter.

2.10 The make Utility

With a console-type compiler such as g++, it is possible to manually recompile
only the files that need to be recompiled. The first time we compile the program,
we would compile all the implementation files as follows:

g++ −c ∗.cpp
g++ ∗.o −o paycalc

The first command compiles the implementation files and produces object files
with the .o extension. The second command links those files to produce the
executable paycalc. Afterwards, if, for example, only the file Time.cpp is
changed, then we only need to do the following:

g++ −c Time.cpp
g++ ∗.o −o paycalc

This recompiles Time.cpp and then relinks all the object files together.
The difficulty with this manual approach is that if we modify a header file,

then we need to figure out which implementation files include it, either directly
or indirectly, because all those files will need to be recompiled. With a large
program, this is obviously not practical.

2.10. THE MAKE UTILITY 73

paycalc: main.o Time.o
g++ main.o Time.o −o paycalc

main.o: main.cpp Time.h
g++ −c main.cpp −o main.o

Time.o: Time.cpp Time.h
g++ −c Time.cpp −o Time.o

clean:
rm −f ∗~ ∗.o paycalc

Figure 2.23: A Makefile for the pay calculator program

Fortunately, the process can be automated by using the make utility. All the
commands needed for the compilation of the program are put in a Makefile along
with a declaration of dependencies between the various source files, as shown
in Figure 2.23. For example, the entry

main.o: main.cpp Time.h
g++ −c main.cpp −o main.o

indicates that the file main.o depends on main.cpp and Time.h, and that
whenever these other files are changed, main.o should be regenerated by using
the command

g++ −c main.cpp −o main.o

The list of dependencies contains all the files that are included, directly or indi-
rectly, in main.cpp. The list of dependencies should normally be on a single
line and the command line that follows should begin with a TAB character.

74 CHAPTER 2. DATA ABSTRACTION

To compile the program using the Makefile, simply type make or
make paycalc. To run the cleaning command included in the Makefile,
type make clean. This will delete the executable paycalc as well as the ob-
ject files and all files with a name that ends in a tilde (~). This includes the
backup files produced by the emacs text editor.

The Makefile shown in Figure 2.23 is available on the course web site under
PayCalculator2.3. You can use it as a model for your own Makefiles.

Study Questions

2.10.1. What is a Makefile?

Chapter 3

Strings and Streams

In this chapter, we will learn about strings, I/O streams and string streams.
These are not only extremely useful components of the C++ standard library,
they also are great examples of abstraction and object-oriented programming.

3.1 C Strings

Strings are sequences of characters. They can be names, words, sentences or
lines of text. Not surprisingly, since so many applications involve data in the form
of text, strings are one of the most common types of data handled by software,
second maybe only to numbers.

Our pay calculator stores the names of the input and output files as C strings.
This means that each of these strings is stored in an array of characters and that
the characters of the string are followed by the null character (\0).

Note that the array holding a C string can be larger than the string, which
allows the string to grow and shrink by simply moving the null character. But the
array still has a fixed size and this imposes a maximum length on the C string.

75

76 CHAPTER 3. STRINGS AND STREAMS

Later in these notes, we will see that dynamic memory allocation allows us to
address this problem.

The C++ library includes a class of strings that is more convenient and safer
to use than C strings. We will learn about this class of strings in the next section.
However, it is useful to learn to program with C strings because there are cir-
cumstances in which C strings are still used. For example, when programming
in C or if ever we needed to implement our own class of strings. In addition, in
C++ programs, literal strings such as "hello" are stored as C strings.

Since C strings are stored in arrays, we can work with them as we would with
any other array. But the C++ standard library provides several functions and
operators that perform useful operations on C strings. Tables 3.1 and 3.2 lists
several of these C string operations. All are defined in the library file cstring,
except for atoi and atof, which are defined in cstdlib, and the I/O func-
tions and operators, which are defined in iostream. The C string functions
are in the global namespace (and not in the std namespace like most elements
of the C++ standard library.) Additional C string library functions are described
in a reference such as [CPP].1

Note that all of these C string functions are fairly unsafe. One reason is that
they all assume that the given C strings are valid. For example, Figure 3.1 shows
a possible implementation of the function strlen. (The function has been
renamed to avoid any chance of conflict with the library version.) The function
scans the array from left to right until the null character is encountered. If ever
the array that holds the string does not contain a null character, the function
will go out of bounds and either return a length that makes no sense or cause
the program to crash.

Another way in which the C string functions can be unsafe has to do with

1Some of these other functions involve concepts that we still have not covered, such as point-
ers. You can ignore these functions for now.

3.1. C STRINGS 77

strlen(cs)
Returns the length of C string cs.

strcpy(dest, source)
strncpy(dest, source, n)

Makes C string dest a copy of C string source. The second version
copies at most n characters. If that maximum is reached before the
null character is copied, then the null character is not appended to
dest.

strcat(dest, source)
strncat(dest, source, n)

Appends a copy of C string source to C string dest. The second
version copies at most n characters, followed by a null character.

strcmp(cs1, cs2)
strncmp(cs1, cs2, n)

Returns a negative integer if cs1 < cs2, 0 if cs1 == cs2, a posi-
tive integer if cs1 > cs2. Uses alphabetical order. The second ver-
sion compares at most n characters from each string.

atoi(cs)
atof(cs)

Converts C string cs into a number. Starting from the beginning of the
string, skips whitespace and then converts as many characters as pos-
sible into a number. If no conversion can be performed, 0 is returned.
The first version returns an int while the second version returns a
double. The string is not modified.

Table 3.1: Some C string operations (part 1 of 2)

78 CHAPTER 3. STRINGS AND STREAMS

stream << cs
Outputs the characters of C string cs.

stream >> cs
Reads characters into C string cs. Skips leading white space and stops
reading at white space (blank, tab or newline) or at the end of the file.
The terminating character is not read.

stream.get(cs, n)
Reads at most n−1 chars into C string cs. Does not read past the end
of the current line. The null character is appended to cs. Does not
read the newline character, if encountered.

stream.getline(cs, n)
Reads the rest of the current input line into C string cs. Does not read
more than n−1 chars. The null character is appended to cs. Reads
the newline character, if encountered, but does not add it to cs.

Table 3.2: Some C string operations (part 2 of 2)

int my_strlen(const char cs[])
{

int i = 0;
while (cs[i] != ’\0’) ++i;
// i is both the index of ’\0’ and the length of
// the string
return i;

}

Figure 3.1: An implementation of strlen

3.1. C STRINGS 79

the size of the arrays. The function strcpy, for example, assumes that the
array holding dest is large enough to hold source. If the array is too small,
then strcpy will go out of bounds and overwrite other program variables with
characters from source. Or the program will crash. Either way, a bad outcome.

The problem is that there is no reliable way for strcpy to determine the size
of the array that holds dest. The strncpy version of strcpy tries to address
this problem. If n is no greater than the size of the array holding dest, then
strncpy will not go out of bounds. But if ever source is of length n, then
destmay be missing a null character. In addition, there is no way for strncpy
to make sure that n is not too large. So strncpy is safer than strcpy, if only
because it encourages the programmer to think about the size of the array. But
strncpy is by no means completely safe.

As mentioned earlier, literal strings such as "abc" are stored as C strings
in a C++ program. Therefore, C string functions can be used on literal strings.
For example, strlen can be used to compute the length of a literal string:
strlen("abc") returns 3. And strcpy can be used to copy a literal string
to another C string: strcpy(dest, "abc"). But note that we can’t copy
anything to a literal string as in strcpy("abc", source). Literal strings
are stored as constant C strings.

The C string functions provide good examples of procedural abstraction: to
use these functions, all we need to know is what they do (and how to call them).
We don’t need to know how the functions work. And there is nothing we can do
that would depend on how these functions work: if ever the implementation of
any these functions was changed, our code would continue to work as long as
the function that was changed still does what it is supposed to do.

80 CHAPTER 3. STRINGS AND STREAMS

Study Questions

3.1.1. What is a C string?

3.1.2. Suppose that you want to store a string of size n as a C string. How small
can the array be? How large can it be?

3.1.3. What is the difference between the C string functions get and getline?

Exercises

3.1.4. Create a function println(cs) that takes a C string as argument and
behaves exactly as the code cout << cs << endl. (But don’t use this
code in implementing the function.)

3.1.5. Create a function strlwr(cs) that changes to lowercase all the letters
in C string cs. (You’ll probably want to use the function tolower from
the standard library cctype. This function takes a character as argument
and returns its lowercase equivalent. If the character has no lowercase
equivalent, then the function simply returns the character unchanged. You
may also need to add the prefix my to the name of your function, as in
my_strlwr. That’s because some cstring libraries may include the
function strlwr.)

3.1.6. Write your own implementation of the following C string functions. Use
the prefix my as in my_strlen to avoid conflicts with the library func-
tions.

a) strcpy.

b) strncpy.

3.2. C++ STRINGS 81

c) strcat.

d) strncat.

e) strcmp. Implement this function by using the comparison operators
(<, <=, ==, >, >=) on individual characters.

3.2 C++ Strings

The C strings of the previous section have several disadvantages. Later in these
notes, we will learn how to grow these strings by dynamically allocating and
deallocating arrays. But these are low-level techniques that are prone to errors.
In addition, the C string library functions are not safe.

The C++ standard library includes a class of strings that addresses these
problems. These strings don’t have a maximum size and they grow automatically
as needed. The class is called string. To distinguish from C strings, objects of
class string are often called C++ strings. The class string is defined in the
library file string and included in the std namespace.

Note that C++ strings have a maximum size that is related to the largest
integer that can be stored in an int variable. But that maximum size is typically
much larger than the size of any string in most applications.2

Tables 3.3 to 3.5 show several string operations. Many more are described
in a reference such as [CPP].3 In these tables, the word string without qualifier
refers to C++ strings. Note that in C++ strings, indices start at 0 just as in
arrays.

2A typical limit is approximately 4 billion characters.
3Some of these operations involve concepts we still have not covered, such as iterators,

ranges, exceptions and capacity. You can ignore these operations for now.

82 CHAPTER 3. STRINGS AND STREAMS

string s
string s(s2)
string s(s2, i, n)
string s(n, c)

Creates a string s and initializes it to be empty, or a copy of string s2,
or a copy of the substring of s2 that starts at index i and is of length
n, or n copies of character c. The argument s2 can also be a C string.

s.length()
s.size()

Asks string s for the number of characters it currently contains.

s.empty()
Asks string s if it is empty.

s.max_size()
Asks string s for the maximum number of characters it can contain.

s[i]
Returns a reference to the character at index i in string s.

s1 = s2
Makes string s1 a copy of string s2. The right operand can also be a
C string or a single character. Returns a reference to s1.

s1.swap(s2)
Asks string s1 to swap contents with string s2.

s.clear()
Asks string s to delete all its characters.

Table 3.3: Some string operations (part 1 of 4)

3.2. C++ STRINGS 83

s1 op s2
Compares string s1 with string s2 where the operator op is one of
==, !=, <, >, <= or >=. Uses alphabetical order. Returns true or
false. One of the operands must be a string object but the other
can be a C string.

s1 + s2
Returns a string that consists of a copy of string s1 followed by a copy
of string s2. One of the operands must be a string object but the
other can be a C string or a single character.

s1 += s2
Appends a copy of string s2 to string s1. The right operand can also
be a C string or a single character. A reference to s is returned.

s.resize(n)
s.resize(n, c)

Asks string s to change its size to n. If n is smaller than the current
size of s, the last characters of s are erased. If n is larger, s is padded
with the null character or with copies of character c.

s.substr(i, m)
s.substr(i)

Asks string s for a copy of the substring that starts at index i, and is
of length m or ends at the end of the string.

s.insert(i, s2)
Asks string s to insert into itself, at index i, a copy of string s2. The
second argument can be of any of the forms accepted by the construc-
tors. A reference to s is returned.

Table 3.4: Some string operations (part 2 of 4)

84 CHAPTER 3. STRINGS AND STREAMS

s.replace(i, m, s2)
Asks string s to replace the substring of length m that starts at index i
by a copy of string s2. The third argument can be of any of the forms
accepted by the constructors. A reference to s is returned.

s.erase(i, m)
s.erase(i)

Asks string s to delete m characters starting at index i, or all the char-
acters from index i to the end of the string. A reference to s is re-
turned.

s1.find(s2)
s1.find(s2, i)

Asks string s1 for the index of the first occurrence of string s2 as a
substring. In the first version, the entire string is searched. In the
other, the search starts at index i. The argument s2 can also be a C
string or a single character. If the search is unsuccessful, the constant
string::npos (“not a position”) is returned.

s1.rfind(s2)
s1.rfind(s2, i)

Similar to find except that the search is for the last occurrence and
that the search ends at index i.

s.c_str()
Asks string s for a C string that contains the same characters as s. That
C string is constant and may become invalid if a subsequent operation
modifies the size of s.

Table 3.5: Some string operations (part 3 of 4)

3.2. C++ STRINGS 85

stoi(s)
stod(s)

Converts string s into a number. Starting from the beginning of the
string, skips whitespace and then converts as many characters as pos-
sible into a number. The first version returns an int while the second
version returns a double. The string is not modified.

to_string(x)
Returns a string representing number x. The argument can be of any
of the usual numeric types.

stream << s
Outputs the characters of string s. Returns a reference to the stream.

stream >> s
Reads characters into string s. Skips leading white space and stops
reading at white space (blank, tab or newline). That terminating char-
acter is not read. Returns a reference to the stream.

getline(stream, s)
Reads characters into string s until then end of the current line. The
newline character is read but not included in s. Returns a reference
to the stream.

Table 3.6: Some string operations (part 4 of 4)

86 CHAPTER 3. STRINGS AND STREAMS

The second constructor provides a way for converting C strings into C++
strings. The reverse conversion can be performed by the c_str method.4,5

As mentioned in the previous section, literal strings such as "abc" are stored
as C strings in a C++ program. Therefore, any function that takes a C string as
argument can be used on a literal string. For example, string s("abc")

initializes s to "abc" by using the second constructor.
That second constructor can also be used for implicit conversions. Therefore,

any function that takes a C++ string as argument can also be used on a C string
(and a literal string). This applies to the C++ string operations themselves, as in
s + "abc". Note, however, that for the sake of efficiency, several operations
come with separate implementations designed to handle C string arguments di-
rectly.

The find and rfind methods return the special value string::npos

(“not a position”) in case the search is unsuccessful. If s is a string, that constant
can also be accessed as s.npos.

The functions stoi, stod and to_string can be used to easily perform
conversions between numbers and their string representations. These functions
are new to C++11 but note that some compilers that support C++11 do not
properly support these functions.6 In this case, the stoi function can be imple-

4Before C++11, the latest version of C++, a common use of this operation was for opening
files because the file stream constructor that takes a file name as argument accepted a C string
but not a C++ string. If we had a file name that was stored in a string variable, it was
necessary to first convert it into a C string by using the c_str method, as in

ifstream ifs(s_file_name.c_str());

This may be necessary with compilers that still don’t support C++11.
5You probably know that C++ functions cannot return arrays. So you may wonder how the

c_str method can return a C string since C strings are stored in arrays. Later in these notes,
we will learn that pointers can be used to return arrays in an indirect way.

6As of September 2016, this was still the case with the version of the g++ compiler that

3.2. C++ STRINGS 87

#include <cstdlib>
#include <string>

inline int stoi(const std::string & s)
{

return std::atoi(s.c_str());
}

Figure 3.2: An implementation of stoi

#include <sstream>
#include <string>

inline std::string to_string(int x)
{

std::ostringstream oss;
oss << x;
return oss.str();

}

Figure 3.3: An implementation of to_string

mented by using the C string atoi function as shown in Figure 3.2. The stod
function can be implemented by using atof in the same way. Figure 3.3 shows
the easiest implementation of to_string. This implementation uses a string
stream, a type of stream we will cover later in this chapter.

comes with the Code::Blocks IDE.

88 CHAPTER 3. STRINGS AND STREAMS

Study Questions

3.2.1. What are the two main advantages of C++ strings over C strings?

3.2.2. How can we convert a C string to a C++ string and vice-versa?

Exercises

3.2.3. Create a function println(s) that takes a C++ string as argument and
behaves exactly as the code cout << s << endl. (But don’t use this
code in implementing the function.)

3.2.4. Write a code segment that starts with a string that contains a person’s
name in the format "John Doe". Assume that the name contains a single
blank space. Your code should produce another string that contains the
same name but in the format "Doe, John".

a) Write your code by using only the default constructor, the indexing
operator and the methods length and resize.

b) Now simplify your code by using the method find and the opera-
tor +=.

c) Simplify your code further by using the method append. (Consult a
reference such as [CPP].)

3.3 I/O Streams

You should already be familiar with basic input and output operations in C++.
The library file iostream contains two objects cin and cout that can be used
for reading data from the keyboard and displaying data on the screen, as shown

3.3. I/O STREAMS 89

cout
A buffered output stream (class ostream) normally associated with
the computer screen.

cin
A buffered input stream (class istream) normally associated with
the keyboard.

Table 3.7: Standard input and output streams

in Table 3.7. These objects are of class istream and ostream, respectively.
These two classes provide several useful operations. Some of these are listed in
Table 3.8. In that table, out and in refer to output and input streams, respec-
tively.

File input and output is done through file stream objects of class ifstream,
ofstream and fstream. The class ifstream is a subclass, or derived class,
of istream, which means that all the istream operations are automatically
included in ifstream. The same is true of ofstream and ostream. The class
fstream is a subclass of both istream and ostream, so all the operations of
these two classes are included in fstream. Table 3.9 includes some operations
that are available only with file streams.

Note that when a file stream variable ceases to exist, then the associated file
is automatically closed. This happens, for example, when a stream variable is
local to a function and that function returns. In such a case, it is not necessary
to explicitly ask the stream to close the file.

Note also that if a function takes as argument an istream passed by ref-
erence, then that function can be called on any input stream, including cin

as well as any input file stream. Similarly, if a function takes as argument an

90 CHAPTER 3. STRINGS AND STREAMS

out << data
Sends data to the output stream and returns the stream.

out.put(c)
Asks the output stream to write character c. The stream is returned.

in >> var
Reads from the input stream a value of the appropriate type and stores
it in the variable. Initial white space is skipped. Returns the stream.

in.get()
Asks the input stream to read and return the next character.

in.get(var)
Asks the input stream to read the next character and store it in the
variable. The stream is returned.

in.peek()
Asks the input stream to return the next character without removing
it from the stream. The stream is returned.

in.putback(c)
Asks the input stream to put back character c so it will be the next
character that is read. The stream is returned.

Table 3.8: Some input and output operations

3.3. I/O STREAMS 91

type f
Creates a file the stream of the specified type (ifstream, ofstream
or fstream).

type f(file_name)
Creates a file stream and asks it to open the file with the given name.
The argument can be a C++ string or a C string.

f.open(file_name)
Asks the file stream to open the file with the given name. The argu-
ment can be a C++ string or a C string.

f.close()
Asks file the stream to close the file currently associated with it.

Table 3.9: Some operations specific to file streams

92 CHAPTER 3. STRINGS AND STREAMS

ostream passed by reference, then that function can be called on any output
stream, including cout as well as any output file stream.

The fact that all the operations of a class like istream are also available in
its subclasses is called inheritance. The fact that a reference argument declared
of a certain class can be set to either an object of that class or an object of any
of its subclasses is an example of polymorphism.7

At any moment, a stream is in at least one of the following states: end of
file, error or good. A stream enters the end of file state if an attempt was made
to read past the end of the file. Note that this is not necessarily an error since
it will occur, for example, when a number is read and that number was the last
piece of data in a text file.

A stream generally enters the error state if the last stream operation failed.
Note that a stream can be in both the end of file and error states, or in one or
the other. Note also that if a stream is in the end of file or the error state, then
every subsequent input operation on that stream will fail.

A stream is in the good state if it is not in the end of file or in the error state.
This essentially means that the stream is ready to be read from.

The stream classes provide methods to determine if a stream is in any of
these states, as shown in Table 3.10. An additional clear method is provided
to return the stream to the good state. This method is useful for error recovery.

When a stream is used as a Boolean expression, it evaluates to true if it is
not in the error state. In other words, a stream is true if the last stream opera-
tion was successful. We already took advantage of this in our pay calculator, for
two different purposes: (1) to check that the files opened successfully (see Fig-
ure 1.9) and (2) to control the loop that reads the input file (see Figure 1.10).
Note that the usual logical operators, including negation (!), can be used on

7At Clarkson, the concepts of inheritance and polymorphism, as well as the mechanism for
creating subclasses, are covered in detail in the course CS242 Advanced Programming Concepts.

3.3. I/O STREAMS 93

stream.eof()
Asks the stream if it is in the end of file state (an attempt was made
to read past the end of the file).

stream.fail()
Asks the stream if it is in the error state (an error occurred).

stream.bad()
Asks the stream if a non-recoverable error occurred. (This is a special
case of the error state.)

stream.good()
Asks the stream if it is in the good state (and ready to be read from).

stream.clear()
Asks the stream to return to the good state (usually for error recovery).

stream
Evaluates to true if the stream is not in the error state (an error did
not occur).

Table 3.10: Error-related stream operations

94 CHAPTER 3. STRINGS AND STREAMS

streams.
As mentioned earlier, the objects cin and cout are defined in the library file

iostream. The classes istream and ostream are also defined there. The
file stream classes are defined in the library file fstream. All of these classes
and objects are part of the std namespace.

The stream objects and operations that were mentioned in this section are
sufficient for many applications. Some additional operations are described in a
reference such as [CPP].

Input and output streams are not only useful, they are also a very good exam-
ple of object-oriented programming. Consider cin. That object provides access
to the standard input stream (normally the keyboard). The cin object most
likely holds data. For example, it may hold the current contents of the input
buffer and the current location of the next character to be read. Of course, users
of cin do not depend on how that data is stored. As such, cin can be seen as
a good example of data abstraction.

But cinmay not even hold that data. For example, the buffer could be stored
in some device that cin has access to. So cin is best thought of not as a piece of
data, but as an object that provides us with a service (access to keyboard input).
In addition, users of cin don’t need to be concerned with how that service is
provided. And they do not depend on those implementation details. All of this
illustrates that OOP goes beyond data abstraction and that OOP does lead to a
high level of independence.

Exercises

3.3.1. Experiment with I/O streams and the various I/O stream operations, in-
cluding error states, by writing a test driver that uses the stream objects
and operations shown in Tables 3.7 to 3.10.

3.4. STRING STREAMS 95

3.3.2. Create functions read(cs, n, in) and readln(cs, n, in) that
behave exactly as the C string functions get and getline described
in Table 3.2. (But don’t use those functions in implementing read and
readln. Make sure your functions handle the end of a file properly. That
is, make sure they can handle reading from the last line of a file even if
that line does not end with a new line character.)

3.4 String Streams

In addition to input and output streams, C++ provides string streams. These
are streams that are each associated with a string instead of a device or a file.
When you write to a string stream, characters get added to a string. When you
read from a string stream, data is read from a string.

String streams support all the general stream operations described in
Section 3.3. That’s because the string stream classes istringstream,
ostringstream or stringstream are subclasses of the I/O stream classes
istream, ostream and iostream. Table 3.11 lists some operations that are
particular to string streams.

To illustrate the usefulness of string streams, we will add some additional
error checking to the pay calculator program we created in the previous two
chapters. Right now, the program does not check for errors in the input file. If
that file is incorrectly formatted, the program will fail silently, producing incor-
rect results without any warning.

Let’s change that. We already check that the input and output files open
properly. Now we will also check that the employee numbers and start and stop
times are read properly. In case of an error, we will report the number of the
line on which the error occurred.

The easiest way to report line numbers, is to read each line of the input file

96 CHAPTER 3. STRINGS AND STREAMS

type ss()
type ss(s)

Creates a string stream ss of the specified type (istringstream,
ostringstream or stringstream). The second version asso-
ciates the stream with a copy of string s.

ss.str()
Asks string stream ss for a copy of its string.

ss.str(s)
Asks string stream ss to set its string to be a copy of string s.

Table 3.11: Some operations specific to string streams

into a string variable and then extract the employee number, start time and stop
time from that string. This is where string streams come in handy.

Figure 3.4 show a portion of the revised main function. The stream manipu-
lator ws is used to extract whitespace from the line to make sure that it contains
nothing else besides the employee number and the start and stop times.

Note that the pay calculator program does not check for every possible error.
In particular, the program does not check that times are properly formatted and
correspond to valid times. For example, the times 8:5 and 37:50 would not
be recognized as errors. We will address this in the next chapter.

The string stream classes are defined in the library file sstream. These
classes are part of the std namespace. The version of the pay calcula-
tor we created in this section is available on the course web site under
PayCalculator2.4.

3.4. STRING STREAMS 97

string s_line;
int line_number = 0;

while (getline(ifs_input, s_line)) {
++line_number;

// extract data from line
istringstream iss_line(s_line);
int employee_number = −1;
Time start_time, stop_time;
iss_line >> employee_number >> start_time

>> stop_time;

// quit if an error occurred
if (!iss_line) {

cout << "Error in input file at line "
<< line_number << ’\n’;

return 1;
}

// quit if rest of line is not blank
iss_line >> ws;
if (!iss_line.eof()) {

cout << "Error in input file at line "
<< line_number << ’\n’;

return 1;
}

...
}

Figure 3.4: Error checking in the pay calculator

98 CHAPTER 3. STRINGS AND STREAMS

Exercises

3.4.1. Write a code fragment that reads a line of text from cin and verifies that
the line contains exactly three integers and nothing else.

Chapter 4

Error Checking

In this chapter, we will discuss the detection and handling of errors. In particular,
we will learn how to use exceptions and how to work with stream error states.

4.1 Introduction

We say that a program is reliable when it does what it is supposed to do when
used properly. Ideally, we would also like our programs to be robust or fail-safe;
that is, we would like them to always behave in a reasonable way, no matter
what. Essentially, this means that our programs should test for all possible errors
and contain code to deal with these errors.

The errors that a program should guard against can be characterized as either
internal or external. Internal errors are errors in the program itself. External
errors are usually errors in the input given to the program. This could be badly
formatted data, data with invalid values, or files that don’t open.

To detect errors in the program itself, it helps to have functions check that
their preconditions are satisfied, whenever this is possible and practical. The pre-

99

100 CHAPTER 4. ERROR CHECKING

conditions of a function are the conditions that must exist at the time a function
is called for that function to be able to do its job properly.

For example, the set_hours method of class Time requires that its argu-
ment new_hours be a valid number of hours, that is, an integer from 0 to 23.
We could consider having the method test to verify that this is indeed the case:

if (new_hours >= 0 && new_hours < 24)

However, this test would take longer than the main job of the method, which is
to set the data member hours_:

hours_ = new_hours;

So the additional safety of having set_hours check its argument comes at a
significant price in terms of running time.

A reasonable approach is to have functions perform error-checking when it
is either cheap or critical. Checking arguments is often cheap when a function
has a complex task to perform. Error-checking is usually critical when a function
reads data from the user or an input file.

Besides deciding whether a function should test for errors, we also need to
decide what a function should do when it detects an error. As a general rule,
it is usually best to have the function try to recover or, if that can’t be done, to
simply let the calling function know that there was a problem. That function is
usually in a much better position to decide on the appropriate course of action.

There are many ways in which a function can let its calling function know
that an error occurred. For example, the set_hoursmethod could set the time
to an invalid value, return the value false, or set an additional argument to
false. Those three options are illustrated in Figure 4.1.

Note that if the first option is chosen, then it is useful to include in the class
a method that tests whether the time is valid, as shown in Figure 4.2.

4.1. INTRODUCTION 101

void set_hours(int new_hours)
{

if (new_hours >= 0 && new_hours < 24)
hours_ = new_hours;

else
hours_ = 99;

}

bool set_hours(int new_hours)
{

if (new_hours >= 0 && new_hours < 24) {
hours_ = new_hours;
return true;

}
else {

return false;
}

}

void set_hours(int new_hours, bool & success)
{

if (new_hours >= 0 && new_hours < 24) {
hours_ = new_hours;
success = true;

}
else {

success = false;
}

}

Figure 4.1: Different ways of reporting errors

102 CHAPTER 4. ERROR CHECKING

bool is_valid() const
{

if (hours() >= 0 && hours() < 24)
return true;

else
return false;

}

Figure 4.2: The method is_valid

The first two options (making the time invalid and returning a Boolean flag)
have a significant weakness: it is very easy for the calling function to ignore the
error, either by accident or by laziness.

The third option makes it harder to ignore the error because it requires the
explicit creation and passing of a Boolean variable. But it is still possible for the
calling function to omit to test that Boolean argument after the function returns.
In addition, with some functions, it is not possible to add extra arguments. This
is often the case with operators. Default constructors are another example. The
next section will introduce a mechanism for error reporting that addresses these
issues.

Study Questions

4.1.1. What is a reliable program? What is a fail-safe or robust program?

4.1.2. What is the main weakness of errors flags as a mechanism for reporting
errors?

4.2. EXCEPTIONS 103

Exercises

4.1.3. Add a method is_valid to each of the classes Date and Fraction

you created for the exercises of Chapter 2.

4.2 Exceptions

Exceptions provide a way of reporting errors that is more robust than return
values or arguments. The idea is that when a function needs to report an error
to its calling function, it throws an exception. When an exception is thrown,
control is immediately returned to the calling function. That function then has
two options:

1. Catch the exception and deal with the error.

2. Ignore the exception, which causes the calling function to throw the same
exception.

An exception that is not caught will continue to propagate all the way to main.
If main does not catch the exception, then the program aborts. It is therefore
impossible for an exception to be completely ignored.

An exception can be a value of any type. However, exceptions are usually
objects that carry information about the error that occurred. Even when an
exception object doesn’t contain any data, the class of the exception is already
useful information since it can be used to determine the appropriate way of
dealing with the error.

We will illustrate the use exceptions by revising our pay calculator program
once again. The last version of the program, the one we created in Section 3.11,
performed some error checking. If an error was discovered, the program printed
an error message to standard output and halted.

104 CHAPTER 4. ERROR CHECKING

We are now going to imagine that the pay calculator is part of a
larger program. We will replace the main function by a function called
run_pay_calculator that will be called by this other program. Instead of
printing error messages, the function run_pay_calculator will report er-
rors to its calling function. And it will do that by throwing exceptions.

Figures 4.3 and 4.4 show most of the implementation of the function
run_pay_calculator. Note how throw statements are used to throw ex-
ceptions.

In each case, an exception of class PayCalculatorError is thrown. Fig-
ure 4.5 shows the declaration of this class. Each of these exception objects holds
a description of the error. The class includes a constructor that allows the de-
scription to be initialized when the exception object is created. It also includes
a method what that allows the description to be retrieved.

Note that the constructor initializes the description by using an initializer. As
discussed in Section 2.6, an alternative would have been to use an assignment
statement in the body of the constructor:

PayCalculatorError(const string & d)
{

description_ = d;
}

But this would cause the description to be first initialized with the default con-
structor of class string and then assigned the value of d. The initializer version
causes the description to be immediately set to d by the string constructor
that takes another string as argument. The initializer version is therefore more
efficient.

Figure 4.6 shows how exceptions thrown by the function
run_pay_calculator can be caught. The function call is placed within a

4.2. EXCEPTIONS 105

void run_pay_calculator()
{

cout << "Name of input file: ";
string input_file_name;
getline(cin, input_file_name);

ifstream ifs_input(input_file_name);
if (!ifs_input)

throw PayCalculatorError("File " +
input_file_name + " did not open");

cout << "Name of output file: ";
string output_file_name;
getline(cin, output_file_name);

ofstream ofs_output(output_file_name);
if (!ofs_output)

throw PayCalculatorError("File " +
output_file_name + " did not open");

...
}

Figure 4.3: A run_pay_calculator function that throws exceptions (part 1
of 2)

106 CHAPTER 4. ERROR CHECKING

void run_pay_calculator()
{

...

string s_line;
int line_number = 0;

while (getline(ifs_input, s_line)) {
++line_number;

// extract data from line
int employee_number = −1;
Time start_time, stop_time;
istringstream iss_line(s_line);
iss_line >> employee_number >> start_time

>> stop_time;

// check if an error occurred
if (!iss_line)

throw PayCalculatorError(
"Error in input file at line " +
to_string(line_number));

...
}

}

Figure 4.4: A run_pay_calculator function that throws exceptions (part 2
of 2)

4.2. EXCEPTIONS 107

class PayCalculatorError
{
public:

PayCalculatorError(const string & d)
: description_(d) {}

const string & what() const
{

return description_;
}

private:
string description_;

};

Figure 4.5: The exception class PayCalculatorError

try statement that’s followed by a catch clause. If run_pay_calculator
throws an exception, then the code within the catch clause is executed.

If run_pay_calculator is used in a larger program, then the context in
which the function is called determines how the exception should be caught. For
example, if the code that normally follows the calculation of the pay cannot be
executed when the pay calculator fails, then the setup shown in Figure 4.7 would
be appropriate. In this case, if run_pay_calculator throws an exception,
then the execution of the try statement is immediately halted and the catch
clause is executed.

On the other hand, if it is possible to recover from a failure of the pay calcula-
tor, then the setup shown in Figure 4.8 should be used instead. A key difference
is that the exception is caught closer to the point where it is thrown.

The main advantage of exceptions, as we mentioned earlier, is that they are
essentially impossible to ignore. Another advantage, as shown in Figure 4.7, is

108 CHAPTER 4. ERROR CHECKING

try { run_pay_calculator(); }

catch (const PayCalculatorError & e) {
cout << "Pay calculator could not complete ("

<< e.what() << ")\n";
}

Figure 4.6: Catching exceptions

try {
// code that precedes the calculation of the pay
run_pay_calculator();
// code that follows the calculation of the pay

}

catch (const PayCalculatorError & e) {
// error handling code

}

Figure 4.7: Catching exceptions when recovery is not possible

// code that precedes the calculation of the pay

try { run_pay_calculator(); }
catch (const PayCalculatorError & e) {

// error handling code
}

// code that follows the calculation of the pay

Figure 4.8: Catching exceptions when recovery is possible

4.2. EXCEPTIONS 109

that in some situations, exceptions allow us to isolate the error handling code
(inside the catch clause) from the “normal” code (inside the try statement).
The error handling code becomes almost a footnote to the normal code. When
error flags are used, this separation is usually not possible since error flags must
almost always be tested immediately after the function call that sets or returns
them. This causes the error handling code to be intertwined with the normal
code, making that code messier.

On the other hand, exceptions also have disadvantages. First, when looking
at a function call, there is nothing in that code that tells us if the function may
throw an exception, what type of exception it may throw, or where execution
will resume in case an exception is thrown. Fully understanding code that uses
exceptions can require more work.

Second, if we call a function that may throw an exception and forget to catch
the exception (or make the conscious decision not to catch it), the compiler will
not say anything. On the other hand, if the function sets an error flag argument
and we forget to include it in the call, the compiler will point out the error. And
if a function returns an error flag and we forget to examine it, the compiler will
often issue a warning.

It is interesting to note that both of these disadvantages are related to the
fact that exceptions allow us to separate the normal code and the error handling
code.

To minimize the disadvantages of exceptions, it is generally recommended
that exceptions be used only for errors that are truly exceptional, errors that are
not expected to occur. For example, errors in user input are not exceptional;
on the contrary, they can be expected to occur. Error flags and invalid states
should probably be used instead of exceptions in this case. On the other hand,
if an input file is generated by another function in the same program, then that
file is internal to the program and it may be reasonable to assume that it would

110 CHAPTER 4. ERROR CHECKING

contain errors only under exceptional circumstances.
There is continuing debate on whether the advantages of exceptions out-

weigh their disadvantages. Some argue that exceptions are great but too hard
to program correctly. In any case, many projects and standard libraries do use
exceptions so it’s important to be familiar with them.

Source code for a version of the pay calculator program that includes the
latest version of the run_pay_calculator function is available on the course
web site under PayCalculator2.5.

Study Questions

4.2.1. What is an exception?

4.2.2. What can a function do when it calls another function and that other
function throws an exception?

4.2.3. What happens if main fails to catch an exception?

4.2.4. What are two advantages and two disadvantages of exceptions?

Exercises

4.2.5. Revise the set methods of class Time so they throw exceptions of
class TimeError in case their arguments are invalid. Define the class
TimeError to be similar to the class PayCalculatorError we cre-
ated in this section.

4.2.6. Revise the set methods of the classes Date and Fraction you
created for the exercises of Chapter 2 so they throw exceptions in

4.3. INPUT VALIDATION 111

case their arguments are invalid. Create exception classes similar to
PayCalculatorError for each of Date and Fraction.

4.3 Input Validation

Input validation, which is to verify that input data is free from errors, is crit-
ical for quality software. But it is also one of the most tedious programming
tasks, largely because there are usually so many ways in which input data can
be invalid.

To illustrate this, consider our class Time. The valid input format is h:mm
or hh:mm where each h and m represents a single digit. But right now, the input
operator of class Time doesn’t generate an error as long as it reads an integer
followed by any non-digit character and another integer. This means that the
strings 8:5, 37:50 and 3.14 would all be considered valid times.

In this section, we will fix some of that. We will have the Time input operator
verify that the input consists of a valid numbers of hours, immediately followed
by a colon and a valid number of minutes. This will mean that the strings 37:50
and 3.14 will now generate errors. (But 8:5 won’t.)

In what follows, we will need to put a stream in the error state. (Recall the
discussion of stream states in Section 3.3.) The state of a stream is determined
by three flags that are stored in the stream. These flags are called the eof bit,
the fail bit and the bad bit. The stream is in the eof state if the eof bit is set. The
stream is in the error state if either the fail bit or the bad bit is set. The stream
is in the good state if none of these bits are set.

Each of the state flags can set by using the method
setstate(stateflag) where the argument is one of the three values
eofbit, failbit or badbit. These values are contained within the
stream object itself and therefore can be accessed as stream.eofbit,

112 CHAPTER 4. ERROR CHECKING

stream.failbit and stream.badbit.

Figures 4.9 and 4.10 show a revised input operator for our class Time. Here’s
a decription of how it works (written in the first person).

We start by reading an integer using the standard input operator: in >> h.
If that operation fails, the stream will be in the error state. In that case, there’s
nothing more we can do so we quit and return the stream as is. Otherwise, a
valid integer was read so we check its value. If the value of h is invalid, we quit
and return the stream after setting its fail bit.

We must then read a character, make sure it’s a colon, check that there is
no whitespace after the colon, read the number of minutes and check that this
number is valid. And this really means that we must check that there is a char-
acter after the hours, make sure it’s a colon, check that there is a character after
the colon, make sure it’s not whitespace, check that there is a number after the
colon and make sure it’s a valid number of minutes.

As mentioned earlier, the revised input operator of Figures 4.9 and 4.10 does
not check that the hours and minutes consist of the correct number of digits. In
addition, the current version of the input operator is destructive, in the sense that
in case of an error, some data will be read from the stream and lost. Fixing both
of these problems would require reading the characters one by one so they can
be counted and restored in case of an error.

Note that we chose to have the input operator report errors through the state
of the stream. This is the standard approach. It has the advantage that other
developers are already familiar with it. One weakness, however, is that little
information is returned about the exact cause of the error. And the user may
omit to test the stream for possible errors. Exceptions could be used to address
both of these problems.

Source code for a class Timewith the input operator presented in this section
is available on the course web site under PayCalculator2.5.

4.3. INPUT VALIDATION 113

istream & operator>>(istream & in, Time & t)
{

// variables for reading the hours and minutes (so
// we can leave t unchanged in case of an error)
int h = 99;
int m = 99;

// read hours after skipping whitespace
in >> h;
if (!in) return in; // no int in stream
if (h < 0 || h > 23) {

in.setstate(in.failbit);
return in;

}

// read next char and make sure it’s a colon
char next_char = in.get();
if (!in) return in;
if (next_char != ’:’) {

in.putback(next_char);
in.setstate(in.failbit);
return in;

}

...
}

Figure 4.9: Input operator that performs error checking (part 1 of 2)

114 CHAPTER 4. ERROR CHECKING

istream & operator>>(istream & in, Time & t)
{

...

// make sure next char is not whitespace
next_char = in.peek();
if (!in) return in;
if (isspace(next_char)) {

in.setstate(in.failbit);
return in;

}

// read minutes
in >> m;
if (!in) return in;
if (m < 0 || m > 59) {

in.setstate(in.failbit);
return in;

}

// all good (except possibly for the number of
// digits in the hours and minutes)
t.set(h, m);
return in;

}

Figure 4.10: Input operator that performs error checking (part 2 of 2)

4.3. INPUT VALIDATION 115

Study Questions

4.3.1. What method can be used to put a stream in the error state? What values
can this method take as argument?

Exercises

4.3.2. Add error-checking to the input operator of the class Date you created
for the exercises of Chapter 2. The operator should check that that the
date is entered in the format m/d/y where m is a number from 1 to 12,
d is a number from 1 to 30, and y is an integer. Spaces are not allowed
on either side of the slashes (/). Use error states as was done for Time in
this section.

4.3.3. Add error-checking to the input operator of the class ThreeDVector
you created for the exercises of Chapter 2. The operator should check that
that the vector is entered in the format (x, y, z) where x, y and z are
real numbers. Any number of spaces is allowed between the parenthe-
ses, commas and numbers. Use error states as was done for Time in this
section.

4.3.4. Add error-checking to the input operator of the class Fraction you cre-
ated for the exercises of Chapter 2. The operator should check that that
the fraction is entered in the format a/b where a is an integer and b is
a positive integer. Spaces are not allowed on either side of the slash (/).
Use error states as was done for Time in this section.

4.3.5. Modify the Time input operator to throw a TimeError in addition to
setting an error state for the stream. Include in the exception object a
description of the error. Be as precise as possible.

116 CHAPTER 4. ERROR CHECKING

4.3.6. Make the Time input operator nondestructive and fully robust. The op-
erator should check that the hours and minutes have the specified number
of digits and, in case of an error, no data should be lost.

Chapter 5

Vectors

In this chapter, we will learn how to use vectors to store large amounts of data.

5.1 A Simple File Viewer

We will illustrate the usefulness of vectors by designing and implementing a
simple file viewer. This program will allow the user to view the contents of a
text file.

Figure 5.1 shows what the interface of this program will look like. The pro-
gram displays the name of the file that is currently being viewed, if any, followed
by a certain number of lines from that file surrounded by a border. Below the
text, a menu of commands is displayed followed by the prompt “choice:”. The
user types the first letter of a command, the command executes and everything
is redisplayed.

The commands next and previous cause the file viewer to display the next or
previous “pages”. The command open causes the program to ask the user for the
name of another file to open.

117

118 CHAPTER 5. VECTORS

preface.txt
−−

1 After a few computer science courses, students
2 may start to get the feeling that programs can
3 always be written to solve any computational
4 problem. Writing the program may be hard work.
5 For example, it may involve learning a difficult
6 technique. And many hours of debugging. But
7 with enough time and effort, the program can be
8 written.
9

10 So it may come as a surprise that this is not
11 the case: there are computational problems for
12 which no program exists. And these are not
−−

next previous open quit
−−−−−−−
command: o
file: introduction.txt

Figure 5.1: Sample interface of the file viewer

5.2. VECTORS IN THE STL 119

We will design and implement the file viewer later in this chapter. The main
issue in the design of the program is the storage of the file contents. To avoid
having to read the file multiple times, we will have the program store the con-
tents of the file in main memory (that is, in the program’s variables).

How should we store the contents of the file? One idea would be as one very
long string, with the different lines separated by new line characters. But then
moving to the next or previous page would involve scanning the string character
by character while counting new line characters. This is somewhat inefficient.

An alternative is to store each line on its own, as a string. We obviously
can’t use separate variables for each of the lines, since the number of lines is
unknown and might be large. This is where vectors come in. In the next section,
we describe what these are.

5.2 Vectors in the STL

In C++, a vector is a container, that is, a software component designed to hold
a collection of elements. To be more precise, a vector holds a (finite) sequence
of elements. These elements can be of any type but in an individual vector, all
elements have to be of the same type. The type of element held by a particular
vector is specified at the time that the vector is created.

C++ vectors are objects of class vector. This class is defined in library file
vector and included in the std namespace.

Let’s start with an example that illustrates some of the vector operations.
Suppose that v is an empty vector of integers. This vector could have been
created by using the default constructor as follows:

vector<int> v;

Note how the type of element stored in the vector is specified in its declaration.

120 CHAPTER 5. VECTORS

Now suppose that we want to fill v with integers read from a file stream in.
If the number of integers contained in the file is unknown, then this can be done
as follows:

int x;
while (in >> x) v.push_back(x);

This loop reads every integer in the file and adds a copy of each one of them to
the back of the vector. The size of the vector increases automatically.

Now suppose that the number of integers contained in the file is known to
be n. In that case, it is more efficient to resize the vector once before the reading
begins:

v.resize(n);
for (int & x : v) in >> x;

Note the difference: v.push_back(x) adds a new element to the vector while
in >> x modifies an existing element of the vector.

In the above example, it is also possible to use the indexing operator:

v.resize(n);
for (int i = 0; i < n; ++i) in >> v[i];

But when a vector needs to be traversed in its entirety, as in this example, it is
more convenient to use a range-for loop, as shown above.

Tables 5.1 and 5.2 show some of the most basic vector operations. The class
supports several more, as described in a reference such as [CPP].1

1Some of these operations involve concepts that we have not covered, such as iterators,
ranges and capacity. You can ignore these operations for now.

5.2. VECTORS IN THE STL 121

vector<T> v
vector<T> v(n)
vector<T> v(n, e)
vector<T> v({elements})
vector<T> v(v2)

Creates a vector v that can hold elements of type T. The vector is
initialized to be empty, or to contain n value-initialized elements of
type T, or n copies of element e, or copies of the given elements,
or copies of all the elements of vector v2.

v.size()
Asks vector v for the number of elements it currently contains.

v[i]
Returns a reference to the element at index i in vector v.

v.front()
v.back()

Asks vector v for a reference to its front or back element.

v.resize(n)
v.resize(n, e)

Asks vector v change its size to n. If n is smaller than the current size
of v, the last elements of v are deleted. If n is larger than the current
size, then v is padded with either value-initialized elements of type T
or with copies of element e.

Table 5.1: Some basic vector operations (part 1 of 2)

122 CHAPTER 5. VECTORS

v.push_back(e)
Asks vector v to add a copy of element e to its back end.

v.pop_back()
Asks vector v to delete its last element.

v1 = v2
v1 = {elements}

Makes vector v1 contain copies of all the elements of vector v2, or
copies of the given elements. Returns a reference to v1.

v.empty()
Asks vector v if it is empty.

v.max_size()
Asks vector v for the maximum number of elements it can contain.

v.clear()
Asks vector v to delete all its elements.

v.assign(n, e)
v.assign({elements})

Asks vector v to change its contents to n copies of element e, or to
copies of the given elements.

v1.swap(v2)
Asks vector v1 to swap contents with vector v2 (without any elements
being copied).

Table 5.2: Some basic vector operations (part 2 of 2)

5.2. VECTORS IN THE STL 123

The second constructor value-initializes the elements of the vector. A com-
plete definition of value initialization involves concepts we have not covered but
the following addresses the most common situations. If the vector elements are
primitive values, such as int’s, double’s or char’s, then the elements are set
to 0. (In the case of char, 0 is converted to the null character.) If the vector
elements are objects, then they are initialized with their default constructor. If
the vector elements are arrays, then the elements of each of these arrays are
value-initialized.2

The argument of the fourth constructor is an initializer list. When such a
list is specified by using braces, the elements should be separated by commas as
in {1, 2, 3}. In addition, the parentheses can be omitted:

vector<T> v{elements}

The following syntax can also be used:

vector<T> v = {elements}

The fifth constructor is known as a copy constructor. It can also be used
with the equal sign syntax:

vector<T> v = v2

2One exception is when the vector elements are objects (or structures) that have no
programmer-defined constructor. In that case, the objects are first zero-initialized and then
initialized with the compiler-generated default constructor. When an object is zero-initialized,
each of its data members is zero-initialized. If the data member is a primitive value, it is set to 0.
If it’s an array, all its elements are zero-initialized. The compiler-generated default constructor
default-initializes each data member of the object. If the data member is a primitive value,
nothing is done. If the data member is an object, it’s initialized with its default constructor. If
the data member is an array, all its elements are default-initialized.

124 CHAPTER 5. VECTORS

Note that vectors have push_back and pop_back methods but no
push_front or pop_front. The reason has to do with efficiency: it is possi-
ble to implement the operations at the back efficiently but doing so at the front
is more difficult. (We will discuss this point in more detail later in these notes.)

Vectors are said to be dynamic in the sense that they can grow and shrink
as needed. Even then, vector do have a maximum size, which is related to the
value of the largest integer that can be stored in an int variable. However, that
maximum size, which can be retrieved by the method max_size, is typically
much larger than what’s needed in most applications. For example, for a vector
of integers, a typical limit is approximately 1 billion elements.

Vectors are also said to be generic because they can hold elements of any
type. In fact, vectors belong to a portion of the C++ standard library called
the Standard Template Library (STL) and the word template in the name of this
library refers to a C++ construct that allows the creation of generic software
components. We will see later that the STL includes several other generic com-
ponents, including other containers as well as functions that implement useful
algorithms.

Study Questions

5.2.1. What is a container?

5.2.2. In what way are vectors dynamic?

5.2.3. In what way are vectors generic?

5.2.4. What happens when a vector element is value-initialized?

5.2.5. Why do STL vectors have no push_front or pop_front methods?

5.3. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 125

Exercises

5.2.6. Experiment with vectors by writing a test driver that creates more than
one type of vector and uses all the methods shown in Tables 5.1 and 5.2.

5.2.7. Create a function print(v, out) that takes as arguments a vector of
integers v and an output stream out and prints to out all the elements
of v, one per line.

5.2.8. Create a function concatenate(v1, v2) that takes as arguments two
vectors of integers v1 and v2 and returns another vector that contains a
copy of all the elements of v1 followed by a copy of all the elements of v2.

5.2.9. Create a function replace(v, x, y) that takes as arguments a vector
of integers v and two other integers x and y, and replaces every occurrence
of x in v by a copy of y.

5.2.10. Create a function count(v, x) that takes as arguments a vector of
integers v and an integer x and returns the number of occurrences of x
in v.

5.3 Design and Implementation of the File Viewer

The general behavior of the file viewer was described in the previous section
but several details still need to be specified. For example, how does the program
know how many lines to display per “page”? What should the next command
do when the last page is already displayed? How should the last page be dis-
played if it is shorter than the others? What should happen if a file doesn’t open?
A full specification of the file viewer should answer these questions as well as

126 CHAPTER 5. VECTORS

every other possible question about the behavior of the program. One possible
specification is shown in Figures 5.2 to 5.4.

We now turn to the design of the program. At any moment in time, the file
viewer holds a copy of the contents of a file. We will call this copy a buffer. There
are three main tasks that the file viewer needs to handle:

1. The user interaction.

2. The storage of the buffer.

3. The execution of the commands.

Ideally, we would like to assign these tasks to three separate components. But the
execution of the commands is highly dependent on the exact way in which the
buffer is stored, so it makes sense to assign these two tasks to a single component
that we call Buffer. The overall control of the program, including most of the
user interaction, is assigned to a FileViewer component.

Here are some more details on the program’s design. The FileViewer has
a single public method, as shown in Figure 5.5. The FileViewer stores the
lines of text in a Buffer object. It also delegates the displaying of the text and
the execution of the commands to that Buffer object. Accordingly, the Buffer
class has several public methods, including one for displaying the buffer and one
for each of the file viewer commands, as shown in Figure 5.6.

We now examine the implementation of the program. The private
FileViewer method display is a helper method to which run delegates
the displaying of the buffer and of the menu of commands. Its implementation
is shown in Figure 5.7. The data member error_message is set when an error
occurs during the execution of a command. In this version of the file viewer, the
only error that can occur is that a file doesn’t open.

5.3. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 127

OVERVIEW

A simple file viewer that allows the user view the
contents of a text file.

DETAILS

The program interacts with the user as shown in the
following example:

preface.txt
−−

1 After a few computer science courses, students
2 may start to get the feeling that programs can
3 always be written to solve any computational
4 problem. Writing the program may be hard work.
5 For example, it may involve learning a difficult
6 technique. And many hours of debugging. But
7 with enough time and effort, the program can be
8 written.
9

10 So it may come as a surprise that this is not
11 the case: there are computational problems for
12 which no program exists. And these are not
−−

next previous open quit
−−−−−−−
command: o
file: introduction.txt

Figure 5.2: Specification of the file viewer (part 1 of 3)

128 CHAPTER 5. VECTORS

The program begins by asking the user for a window
height. This is the number of lines that will be
displayed as each "page". The displayed lines are
numbered starting at 1 for the first line of the file.
If the number of lines on the last page is smaller
than the window height, the rest of the window is
filled with unnumbered empty lines.

Each page is displayed between two lines of 50 dashes.
The name of the file is printed above the first line
of dashes. Below the second line of dashes, a menu of
commands is displayed. Below that menu, the prompt
"choice:" is displayed. The user types the first
letter of a command, the command executes and
everything is redisplayed. Some commands prompt the
user for more information.

Here is a description of the various commands:

next: The next page is displayed. Does nothing if the
last line of the file is already displayed.

previous: The previous page is displayed. Does
nothing if the first line of the file is already
displayed.

open: Asks for a file name (with prompt "file:") and
displays that file. If a file named X does not open,
the message "ERROR: Could not open X" is displayed
just before the file name is redisplayed.

Figure 5.3: Specification of the file viewer (part 2 of 3)

5.3. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 129

quit: Stops the program.

NOTES FOR LATER VERSIONS

Add more error−checking. (Check that commands are
entered properly and that the window height is a
positive integer.)

Figure 5.4: Specification of the file viewer (part 3 of 3)

class FileViewer
{
public:

void run();

private:
void display();

Buffer buffer;
int window_height;
std::string error_message;

};

Figure 5.5: Declaration of FileViewer

130 CHAPTER 5. VECTORS

class Buffer
{
public:

void display() const;
const std::string & get_file_name() const
{

return file_name;
}
void move_to_next_page();
void move_to_previous_page();
bool open(const std::string & file_name);
void set_window_height(int h)
{

window_height = h;
}

private:
std::vector<std::string> v_lines;
int ix_top_line = 0;
std::string file_name;
int window_height;

};

Figure 5.6: Declaration of Buffer

5.3. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 131

void FileViewer::display()
{

const string long_separator(50, ’−’);
const string short_separator(8, ’−’);

if (!error_message.empty()) {
cout << "ERROR: " + error_message << endl;
error_message.clear();

}

string file_name = buffer.get_file_name();
if (file_name.empty())

cout << "<no file opened>\n";
else

cout << file_name << endl;

cout << long_separator << endl;
buffer.display();
cout << long_separator << endl;
cout << " next previous open quit\n";
cout << short_separator << endl;

}

Figure 5.7: The FileViewer method display

132 CHAPTER 5. VECTORS

Figure 5.8 shows most of the implementation of the FileViewer method
run. Figure 5.9 shows the body of the switch statement. Figures 5.10 and 5.11
show the implementation of the Buffer methods that weren’t already imple-
mented in the class declaration. All of this code is fairly straightforward.

The complete source code and documentation of the file viewer is available
on the course web site under FileViewer.

Exercises

5.3.1. Modify the file viewer as described below. Change the original specifi-
cation, design and implementation as little as possible. Error messages
should be displayed at the top of the window, just like when a file does
not open.

a) Add a jump command that asks the user for a line number and re-
displays the file with the requested line at the top. In case the user
enters an invalid line number N, the program should print the error
message ERROR: N is not a valid line number. (You’ll need to revise
the previous command to ensure that it doesn’t move past the begin-
ning of the file after a jump.)

b) Add a search command that asks the user for a string and finds the
first line that contains that string. The search starts at the first line
currently displayed and stops at the end of the file. If the string is
found, the line that contains it is displayed at the top. In case the
user enters a string X that does not occur in the file, the program
should print the error message ERROR: string "X" was not found.

c) Modify the search command so that the search wraps around to the
beginning of the file when the end of the file is reached.

5.3. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 133

void FileViewer::run()
{

cout << "Window height? ";
cin >> window_height;
cin.get(); // ’\n’
cout << ’\n’;
buffer.set_window_height(window_height);

bool done = false;
while (!done) {

display();

cout << "choice: ";
char command;
cin >> command;
cin.get(); // ’\n’

switch (command) {
...

};
cout << endl;

} // while

return;
}

Figure 5.8: The FileViewer method run

134 CHAPTER 5. VECTORS

switch (command) {
case ’n’: {

buffer.move_to_next_page();
break;

}

case ’o’: {
cout << "file name: ";
string file_name;
getline(cin, file_name);
if (!buffer.open(file_name))

error_message =
"Could not open " + file_name;

break;
}

case ’p’: {
buffer.move_to_previous_page();
break;

}

case ’q’: {
done = true;
break;

}
};

Figure 5.9: The switch statement of run

5.3. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 135

inline void Buffer::move_to_next_page()
{

if (ix_top_line + window_height < v_lines.size())
ix_top_line += window_height;

}

inline void Buffer::move_to_previous_page()
{

if (ix_top_line > 0) ix_top_line −= window_height;
}

void Buffer::display() const
{

int ix_stop_line = ix_top_line + window_height;
for (int i = ix_top_line; i < ix_stop_line; ++i) {

if (i < v_lines.size())
cout << std::setw(6) << i+1 << " "

<< v_lines[i];
cout << ’\n’;

}
}

Figure 5.10: Implementation of some of the Buffer methods

136 CHAPTER 5. VECTORS

bool Buffer::open(const string & new_file_name)
{

std::ifstream file(new_file_name);
if (!file) return false;

v_lines.clear();
// Note: the vector is cleared only after we know
// the file opened successfully.

string line;
while (getline(file, line))

v_lines.push_back(line);

file_name = new_file_name;
ix_top_line = 0;
return true;

}

Figure 5.11: Implementation of the Buffer method open

5.4. VECTORS AND EXCEPTIONS 137

d) Add an again command that repeats the last search. If that last search
was the previous command, then the new search starts at the second
line that is currently displayed. If no search has been previously per-
formed, then the again command asks the user for a string.

5.3.2. Add more error checking to the file viewer. Change the program as little
as possible.

a) Make the program check that the user enters a positive integer as the
window height. If not, the program should print an error message
and ask again.

b) Make the program check that the user enters either the whole name
of a command or the first letter of the command. If the user enters
an invalid command X, the program should print the error message
ERROR: X is not a valid command. The error message should be dis-
played at the top of the window, just like when a file does not open.

5.4 Vectors and Exceptions

As mentioned earlier in these notes, some components of the C++ standard
library use exceptions. Vectors are one example.

There are two types of exceptions that vectors may throw. One concerns
the allocation of memory. In principle, any operation that causes a vector to
increase the amount of memory it uses will throw a bad_alloc exception if
there isn’t enough memory available to the program. This includes the resize,
push_back and assign methods, as well as the assignment operator and the
various constructors.

138 CHAPTER 5. VECTORS

The second type of exception a vector may throw concerns access to individ-
ual elements. The context here is that the vector indexing operator is not safe:
it does not check that the given index is valid, which may cause the operator to
access memory that does not belong to the vector. This can cause the program
to crash. Perhaps even worse, it can cause an incorrect value to be retrieved or
the value of some other variable to change. These errors can introduce into a
program bugs that are very hard to find.

This lack of safety means that it’s up the user of the indexing operator to
verify that indices are valid. In most circumstances, this is desirable because it
allows the indexing operator to execute more quickly.

On the other hand, if in some context a safe indexing operator is preferable,
vectors provide a method at that takes an index as argument and returns a
reference to the corresponding element, just like the indexing operator. But,
unlike the indexing operator, the at method will throw an out_of_range

exception if the index is invalid.
The bad_alloc exception class is defined in the new library. The

out_of_range exception class is defined in the stdexcept library. Both
classes are part of the std namespace.

5.5 Arrays

In this chapter, we learned that C++ vectors can be used to store sequences of
elements. But there is a simpler alternative: ordinary arrays. Table 5.3 shows
how arrays can be created and how their elements can be accessed.

In the first form of array declaration, the elements of the array are default-
initialized. Recall that this means that if the array elements are primitive values,
then the elements are not initialized. If the array elements are objects, then they
are initialized with their default constructor. If the array elements are themselves

5.5. ARRAYS 139

T a[N]
T a[N] = {elements}
T a[] = {elements}

Creates an array a that can hold elements of type T. The array is
initialized to contain N default-initialized elements of type T, or copies
of the given elements. In case the number of given elements is
less than N, the remaining elements of a are value-initialized. N must
be a compile-time constant.

a[i]
Returns a reference to the element at index i in array a.

Table 5.3: Some basic array operations

arrays, then the elements of each of these arrays are default-initialized.

In the second form of array declaration, elements that are not given explicit
initial values are value-initialized. Recall that this means that if these elements
are primitive values, then the elements are set to 0. If these elements are objects,
then they are initialized with their default constructor. If these elements are
themselves arrays, then the elements of each of these arrays are value-initialized.
(See the footnote in Section 5.2 for an exception.)

Ordinary C++ arrays have one advantage over vectors: when used in some
contexts, the array indexing operator runs slightly more quickly than the vector
indexing operator.

However, ordinary arrays have several major weaknesses compared to vec-
tors. In fact, vectors were developed precisely to address these weaknesses.

The first weakness, and perhaps the main one, is that ordinary C++ arrays
have a predetermined size. Predetermined here means determined at compile

140 CHAPTER 5. VECTORS

void print(const int a[], int n)
{

for (int i = 0; i < n; ++i)
cout << a[i] << ’\n’;

}

Figure 5.12: A function that prints an array

time, before the execution of the program. The size of an array is also fixed: it
cannot change during the execution of the program. This is a significant limita-
tion that can make a program fail in case an array is too small, or waste memory
in case an array is unnecessarily large.

In contrast, as we already know, vectors can be declared to be of any size
and that size can be changed as needed during the execution of the program, by
using methods such as resize, push_back and assign.

Later in these notes, when we learn the techniques that are used to imple-
ment containers such as vectors, we will learn that arrays can be dynamically
allocated. However, this involves low-level techniques that are somewhat incon-
venient and prone to errors. In any case, all C++ arrays, even those that are
dynamically allocated have several other weaknesses.

First, arrays are not aware of their size. In particular, there is usually no
reliable way for a function to figure out the size of an array argument, which is
why we typically pass the size of the array as a separate additional argument.
For example, Figure 5.12 shows a function that prints the contents of an array
of integers. One danger is that nothing guarantees that the value of the size
argument is correct. In contrast, vectors are aware of their size and whenever
we need to know that size, we just have to ask by using the method size().

Second, the usual operators, such as =, == and <, don’t work with arrays.

5.5. ARRAYS 141

Actually, they can sometimes work but they don’t do what you would expect.
For example, if a and b are two arrays, then a = b, if it compiles, will cause
the names a and b to refer to the same array. This is called a shallow copy. In
contrast, we would likely want a = b to cause a to become a separate copy of
array b. This is called a deep copy. With arrays, dynamically allocated or not,
the only way to achieve a deep copy is to write a loop. This is inconvenient and
a possible source of errors. In contrast, vectors support all the usual operators,
including =, == and <.

Third, it is not easy to have a function return a copy of an array. In particular,
the return type of a C++ function cannot be an array. It is possible to get around
this problem by using dynamically allocated arrays. But, once again, these tech-
niques are inconvenient and prone to errors. In contrast, functions can return
copies of vectors just as if they were a value of any of the primitive data types.3

To summarize, ordinary C++ arrays have the following four weaknesses: (1)
they have a fixed, predetermined size, (2) they don’t know their size, (3) they
don’t support the usual operators and (4) functions cannot easily return copies
of arrays.

Study Questions

5.5.1. What are two advantages of arrays over vectors?

5.5.2. What are four advantages of vectors over ordinary arrays?

3Note, however, that this is something that is usually done only with small vectors. It is more
efficient to avoid the copying of the vector by passing it to the function as a reference argument.

142 CHAPTER 5. VECTORS

Exercises

5.5.3. Modify the file viewer by using an array to implement the Buffer. Use
an array of size 100,000. In case a file called X is too large, the program
should print the error message ERROR: file X is too large and redisplay the
previous file.

5.5.4. Repeat the previous exercise but this time, in case the file is too large,
have the program use the array to store part of the file. When another
part is needed, the program reopens the file to read that part and store it
in the array.

Chapter 6

Generic Algorithms

The C++ Standard Template Library includes algorithms that solve a wide vari-
ety of common problems. In this chapter, we will learn how to use and imple-
ment some of these algorithms. In the process, we will become familiar with the
important concepts of iterators, function templates, function objects and generic
programming.

6.1 Introduction

Some problems come up very frequently in a wide variety of software projects.
To illustrate, here are just three examples:

1. Computing the maximum of two values.

2. Counting the number of occurrences of an element in some container (a
vector, for example).

3. Sorting the elements of a container in some order.

143

144 CHAPTER 6. GENERIC ALGORITHMS

Standard algorithms have been developed for all of these common problems.
Some are trivial: to compute the maximum of two values, simply compare them
by using the less-than operator (<). Others are nontrivial but simple: to count
the number of occurrences of an element in a sequence container such as a
vector, initialize a counter to 0 then scan the sequence from beginning to end
while adding one to the counter every time an occurrence of the element is
seen. Some of these algorithms, on the other hand, can be fairly complex. This
includes efficient algorithms for sorting vectors.1

When needed, we can always implement these standard algorithms our-
selves. But the STL includes functions that implement many of these algorithms.
For example,

max(a, b)

returns the maximum of a and b. The number of occurrences of element e in
vector v can be computed as follows:

count(v.begin(), v.end(), e)

And

sort(v.begin(), v.end())

rearranges the elements of vector v in increasing order. These functions are
called STL algorithms.

Using STL algorithms has a number of advantages compared to implement-
ing algorithms ourselves. First, obviously, it saves time. Second, it leads to more
reliable software because the STL algorithms have been more extensively tested

1Examples are mergesort, heapsort and quicksort. We will study mergesort and quicksort
later in these notes. At Clarkson, heapsort is normally covered in the course CS344 Algorithms
and Data Structures.

6.1. INTRODUCTION 145

than any of our own implementations ever could. Third, it makes our programs
easier to understand because other programmers are already familiar with the
STL algorithms.

The use of STL algorithms, as well as the use of any software component from
a standard library, is an example of software reuse. Reusing any software compo-
nent, but especially standard components, generally gives those three benefits:
faster development, increased reliability, and software that’s easier to under-
stand.

Note that the STL algorithms are generic, in the sense that they can be used
on arguments of more than one type. For example, max can be used on any type
of value that supports the less-than operator (<). The algorithm count can be
used on any type of vector, as long as the element type supports the equality
testing operator (==). And sort can be used on any vector whose element
type supports the less-than operator (<). In the next section, we will see that
the count and sort algorithms are actually even more generic than that since
they can be used on a wide variety of containers, not just vectors.

Now, in the above examples, exactly what type of value are the arguments
v.begin() and v.end()? This is what we will learn in the next section.

Study Questions

6.1.1. What are three benefits of using standard software components such as
the STL algorithms?

6.1.2. What is a generic algorithm?

146 CHAPTER 6. GENERIC ALGORITHMS

Exercises

6.1.3. Experiment with the three STL algorithms mentioned in this section by
writing a test driver that uses each one of them on more than one type of
argument. (These algorithms are defined in the library file algorithm
and included in the std namespace.)

6.2 Iterators

In the previous section, we learned that the number of occurrences of element e
in vector v can be computed as follows by using the STL algorithm count:

count(v.begin(), v.end(), e)

The first two arguments specify the portion of the vector over which the counting
occurs. But exactly what type of value are those arguments?

These arguments are iterators. In fact, the STL algorithm count has the
general form

count(start, stop, e)

where the arguments start and stop are iterators that specify the positions
in a container where the counting will start and where it will stop.

All STL algorithms use iterators to specify positions. Another example is the
sort algorithm we mentioned in the previous section:

sort(start, stop)

sorts the elements that occur in the portion of a container that begins at start
and ends at stop.

6.2. ITERATORS 147

We will soon learn exactly what iterators are and what we can do with them.
But, first, why do STL algorithms use iterators and not indices to specify positions
within a container? The answer is simple: indices are not an efficient way of
accessing elements in most types of containers, including the list and map

containers that we will study later in these notes. For this reason, most types
of containers don’t support indices (that is, they don’t have an operation like
an indexing operator that allows an element to be accessed given its index).
Iterators, on the other hand, can be used to efficiently access elements in most
types of containers, including vectors, lists and maps.

But then, why don’t STL algorithms come in two versions, one for iterators
and one for indices? For example, the index version of count could have the
general form

count(container, i, j, e)

where the arguments i and j are indices that specify where the counting starts
and stops. One possible answer is that since iterators can be used to efficiently
access elements in a vector, the index version of count is not needed. By not
including it, the STL is kept simpler.

Perhaps a better answer relates to a design issue. When writing code that
involves vectors, it is sometimes necessary to use indices. But sometimes iter-
ators would also do the job perfectly well. And in those situations, it is better
to use iterators because the same code can later be reused with other contain-
ers, such as lists, that don’t support indices. The fact that the STL only includes
iterator versions of its algorithms encourages us to do precisely that: to use it-
erators, whenever possible, because this leads to code that’s more general and
has a greater chance of being reused.

So what exactly is an iterator? An iterator is a value, usually an object, whose
most basic purpose is simply to mark a position within a container. We say that
the iterator points to the element that occupies that position.

148 CHAPTER 6. GENERIC ALGORITHMS

For example, consider

count(v.begin(), v.end(), e)

As we said earlier, this returns the number of occurrences of e in v. The begin
method returns a begin iterator, one that points to the first element of the vector.
The end method returns a special iterator called the end iterator. This iterator
does not point to any elements. Instead, it should be thought of as pointing to a
position that’s just past the last element of the container. This is consistent with
the fact that the second argument of count should be the position where the
counting stops.

In general,

count(start, stop, e)

counts from start to stop. In this context, the pair of iterators start and
stop specifies a range of positions. In the STL, ranges of positions are always
specified by two iterators that act as the endpoints of an interval. The first it-
erator is included in the range but the second one is not. Such a range can be
represented using the usual mathematical notation as [start, stop).

Now, let’s say that we want to count the number of occurrences of e among
the first 10 elements of v. To specify that range of positions, we need an iterator
that points to v[0] and one that points to v[10]. The begin iterator points
to v[0]. An iterator that points to v[10] can be obtained by adding 10 to
v.begin():

count(v.begin(), v.begin() + 10, e)

This works because, in general, itr + i produces an iterator that points i
positions to the right of itr. Note that this gives us a way to convert indices
into iterators.

6.2. ITERATORS 149

It’s also possible to do the reverse conversion, from a vector iterator to an
index. This can be used, for example, with STL algorithms that return iterators.
One of those is the find algorithm. For example,

find(v.begin(), v.end(), e)

returns an iterator to the first occurrence of e in vector v. That iterator can then
be converted to an index by computing the difference between the iterator and
the begin iterator:

find(v.begin(), v.end(), e) − v.begin()

This works because the subtraction operator returns the distance, in number of
elements, between the two iterators. Since v.begin() points to the element
with index 0, the distance itr − v.begin() is the index of the element that
itr points to.

In general,

find(start, stop, e)

returns an iterator to the first occurrence of e in the range [start, stop). In
case e is not found in that range, find returns stop. In the previous example,
find would return v.end(). To detect that possibility, we could convert the
returned iterator to an index and test if it equals v.size():

if (find(v.begin(), v.end(), e) − v.begin() ==
v.size()) ...

This works because if the end iterator pointed to an element, that element would
have index v.size(). But it’s simpler to directly compare the iterator returned
by find to v.end():

150 CHAPTER 6. GENERIC ALGORITHMS

if (find(v.begin(), v.end(), e) == v.end()) ...

And this method has the advantage of working on all types of containers, not
just containers that have indices.

As we said earlier, the most basic purpose of an iterator is to mark a position
in a container. But an iterator can also be used to access the element at that
position. For example, suppose that we need to change to 12 the first occurrence
of 5 in vector v. This could be done by using find to locate the first 5 and then
converting the iterator into an index:

int i = find(v.begin(), v.end(), 5) − v.begin();
v[i] = 12;

But it is simpler to use the iterator directly:

∗find(v.begin(), v.end(), 5) = 12;

In this code, the dereferencing operator (∗) is applied to the iterator returned by
find. In general, if itr is an iterator, then ∗itr refers to the element that
itr points to.

In the previous example, we might prefer to first store the iterator returned
by find and then dereference it:

auto itr = find(v.begin(), v.end(), 5);
∗itr = 12;

The keyword auto asks the compiler to deduce the appropriate type for the
variable. In this case, itr will be given the type of the iterator returned by
find.

The use of auto is a good idea here because iterator types are a bit messy.
For example, if v is a (non-constant) vector of integers, then find in the above
example would return an iterator of type

6.2. ITERATORS 151

for (auto itr = find(v.begin(), v.end(), 5);
itr != v.end();
++itr)

cout << ∗itr << ’ ’;

Figure 6.1: Using iterators to traverse a container

vector<int>::iterator

This is because each type of STL container provides its own type of iterator and
that type is defined within the class itself. The double-colon (::) is used to
access that type. In general, if Container is a container type, then

Container::iterator

is the type of iterator that works with Container.
Note that auto should only be used where it really improves readability.

That’s the case with complex types such as vector<int>::iterator but
not with simple types such as int and string. In those cases, it is better to
specify the type explicitly.

Iterators can also be used to step through, or iterate over, the elements of a
container. (That’s why they’re called iterators. In other languages, sometimes
they’re called enumerators.) For example, suppose that we need to print all the
elements of vector v starting at the first occurrence of 5. This could be done
with indices but, once again, it is simpler to use iterators directly, as shown in
Figure 6.1. The iterator itr is initialized to the position of the first 5. At each it-
eration of the loop, the increment operator (++) is used to make the iterator point
to the next element. Eventually, the iterator will move past the last element, to
the position of the end iterator. This will cause the loop to terminate.

152 CHAPTER 6. GENERIC ALGORITHMS

Iterators can be used to step through all the elements of a container, as in
the following example:

for (auto itr = v.begin(); itr != v.end(); ++itr)
cout << ∗itr << ’ ’;

But when iterating over an entire container, it is simpler to use a range-for loop:

for (int x : v) cout << v << ’ ’;

But note that range-for loops are actually implemented by using iterators: in
the above example, the range-for loop is essentially converted into the previous
iterator-based loop. In fact, it is the case that range-for loops can be used on
every container that provides begin and end methods.

To summarize, in C++ and many other programming languages, iterators
are a uniform and efficient way of specifying positions and accessing elements
in many types of containers. An iterator is a value (usually an object) that marks
a position in a container, provides access to the element at that position, and
allows us to step through all the elements of a container. In the STL, positions
are specified by using iterators. This allows STL algorithms to be highly generic
in that they can be used on different types of containers.

All standard types of iterators support the basic operations ∗, ++, == and !=.
Vector iterators support additional operations, as described in this section. In the
next section, we will describe in more detail the operations supported by various
types of iterators.

Study Questions

6.2.1. What is an iterator?

6.2. ITERATORS 153

6.2.2. In what way do iterators allow algorithms to be more generic?

6.2.3. Does it make sense to dereference the end iterator of a container?

6.2.4. What is the C++ keyword auto used for?

6.2.5. What are some of the operations supported by vector iterators?

6.2.6. How is a range of positions specified in the STL?

Exercises

6.2.7. Assuming that v is a vector of integers, write code fragments that perform
the following tasks. Use the STL algorithms count and find.

a) Set integer variable count to the number of 0’s in the first half of v.
(In case v is of odd length, consider that the middle element is in the
second half of v.)

b) Change to 1 the first 0 that occurs in v. Do nothing if the vector does
not contain any 0’s.

c) Add 1 to every element that precedes the first 0 in v. If v contains
no 0’s, add 1 to every element in v.

6.2.8. Create the following functions, which are intended to be used on vectors
of integers. In each case, the arguments start and stop are iterators
of type vector<int>::iterator. The arguments e, x and y are in-
tegers.

a) count(start, stop, e) returns the number of occurrences of
element e in the range [start,stop).

154 CHAPTER 6. GENERIC ALGORITHMS

b) fill(start, stop, e) sets to e every element in the range
[start,stop).

c) find(start, stop, e) returns an iterator to the first occur-
rence of element e in the range [start,stop). In case e is not
found, stop is returned.

d) replace(start, stop, x, y) replaces by y every occurrence
of element x in the range [start,stop).

(Note that these functions are special cases of the STL algorithms that have
the same name. These special cases work only on vectors of integers but
later in this chapter, we will learn to create functions that can be used on
multiple types of containers, just like the STL algorithms.)

6.3 Iterator Types and Categories

In this section, we will learn that STL containers each provide several types of
iterators. In addition, each iterator type belongs to a category that determines
what operations the iterators of that type support.

Consider the code

find(v.begin(), v.end(), e)

If v is a non-constant vector, then v.begin() and v.end() return iterators
of type iterator, which causes find to return an iterator of the same type.
As mentioned in the previous section, this type of iterator can be used to modify
the element that it points to.

If, on the other hand, v is a constant vector, then v.begin() and v.end()
return iterators of type const_iterator, which once again causes find to

6.3. ITERATOR TYPES AND CATEGORIES 155

return an iterator of the same type. These are called constant iterators because
they cannot be used to modify the element they point to. This makes sense
because it prevents the elements of a constant vector from being modified.

Now, suppose that v is a non-constant vector but that for some reason we
do not wish to modify it. Then, in the above code, we could instead use the
methods cbegin and cend:

find(v.cbegin(), v.cend(), e)

These methods always return constant iterators, even if the vector is non-
constant. This would cause find to return a constant iterator, thereby pro-
tecting the vector elements from modification.

In addition to plain iterators and constant iterators, STL containers provide
reverse iterators and constant reverse iterators. These iterators are of type
reverse_iterator and const_reverse_iterator, respectively.

Reverse iterators, as the name indicates, are designed to traverse a container
in reverse order. Containers that support these iterators also provide a method
rbegin that returns a reverse iterator that points to the last element of the
container and a method rend that returns a reverse iterator that points to a
position just before the first element of the container. In addition, the ++ op-
erator works in reverse direction with reverse iterators. The methods rbegin
and rend also have versions crbegin and crend that always return constant
reverse iterators.

For example, the following code prints the contents of vector v in reverse
order:

for (auto itr = v.crbegin();
itr != v.crend();
++itr)

cout << ∗itr;

156 CHAPTER 6. GENERIC ALGORITHMS

And

find(v.rbegin(), v.rend(), e)

searches v in reverse order, therefore returning an iterator to the last occurrence
of e.

So iterators can be of four different types: plain, constant, reverse, constant
reverse. But there are also several iterator categories. The two most important
ones are bidirectional iterators and random-access iterators.

The difference between these iterator categories is in the set of operations
that they support. Bidirectional iterators support the basic operations ∗, −>,
++, −−, == and != described in Table 6.1.

The operator−> is called the dereference-and-select operator or, more sim-
ply, the arrow operator. It is a convenient combination of the dereferencing op-
erator (∗) followed immediately by the selection operator (.). For example, if
itr points to a Time, then the message hours can be sent to ∗itr as either
(∗itr).hours() or itr−>hours(). The arrow version is easier to both
write and read.

Random-access iterators support all the operations supported by bidirec-
tional iterators plus the following ones: +i, −i, +=i, −=i, −, < and [i]. These
operations are described in Table 6.2. Note that itr[0] is equivalent to ∗itr
and that, in general, itr[i] is equivalent to ∗(itr + i).

Vector iterators are random-access iterators. C++ strings also provide
random-access iterators. Lists and maps, two containers we will study later in
these notes, only provide bidirectional iterators.

Study Questions

6.3.1. What is the difference between a plain iterator and a constant iterator?

6.3. ITERATOR TYPES AND CATEGORIES 157

∗itr
Returns a reference to the element that itr points to.

itr−>f(args)
itr−>var

Accesses the element that itr points to and either sends message f
with arguments args to it or returns a reference to data member var.
The element must be an object or a structure.

++itr
−−itr

Makes itr point to the next or previous element.

itr1 == itr2
itr1 != itr2

Returns true if itr1 and itr2 point or don’t point to the same
element.

Table 6.1: Operations supported by bidirectional iterators

158 CHAPTER 6. GENERIC ALGORITHMS

itr + i
itr − i

Returns an iterator that points i positions to the right or left of itr.

itr += i
itr −= i

Moves the iterator i positions to the right or left.

itr1 − itr2
Returns the distance, in elements, between itr1 and itr2.

itr1 < itr2
Returns true if itr1 points to the left of itr2.

itr[i]
Accesses the element i positions to the right of the element that itr
points to.

Table 6.2: Additional operations supported by random-access iterators

6.4. VECTORS AND ITERATORS 159

6.3.2. What method always returns a constant begin iterator?

6.3.3. What position does a reverse begin iterator point to? What about a re-
verse end iterator?

6.3.4. In what direction does the −− operator move a reverse iterator?

6.3.5. What operations are supported by bidirectional iterators?

6.3.6. What operations are supported by random-access iterators?

Exercises

6.3.7. Experiment with the operations of random-access iterators by writing a
test driver that uses all the operations shown in Table 6.2.

6.4 Vectors and Iterators

We now know that vectors provide random-access iterators. We also know that
the methods begin, end and their variations can be used to obtain vector iter-
ators. But there are several other vector operations that take iterators as argu-
ments. Table 6.3 shows some of them.

Note that several vector operations may invalidate existing vector iterators.
In general, whenever the size of a vector increases, all iterators may become
invalid. When elements are removed from a vector, then the following iterators
are invalidated: all iterators that point to the removed elements or to positions
to the right of those elements, including the end iterator.

160 CHAPTER 6. GENERIC ALGORITHMS

vector<T> v(start, stop)
Creates a vector v that can hold elements of type T. The vector is
initialized with copies of all the elements in the range [start, stop).

v.assign(start, stop)
Asks vector v to change its contents to a copy of all the elements in
the range [start, stop).

v.insert(itr, e)
Asks vector v to insert, at the position indicated by the iterator itr,
a copy of element e. An iterator that points to the new element is
returned.

v.insert(itr, {elements})
v.insert(itr, start, stop)

Asks vector v to insert, at the position indicated by the iterator itr,
copies of the given elements, or copies of all the elements in the
range [start, stop). An iterator that points to the first new element
is returned. If the range is empty, itr is returned.

v.erase(itr)
Asks vector v to delete the element that itr points to. An iterator
that points to the next element is returned.

v.erase(start, stop)
Asks vector v to delete all the elements in the range [start, stop).
An iterator that points to the next element is returned.

Table 6.3: Some vector operations that involve iterators

6.5. ALGORITHMS IN THE STL 161

Study Questions

6.4.1. What operations may invalidate vector iterators?

Exercises

6.4.2. Experiment with the vector operations that use iterators by writing a test
driver that uses all the operations shown in Table 6.3.

6.5 Algorithms in the STL

This section presents several of the generic algorithms available in the STL. Many
more are described in a reference such as [CPP].

Tables 6.4 and 6.5 list some generic algorithms that are designed to be used
on sequences such as vectors. All of these algorithms work by traversing the
sequence from one end to the other. Accordingly, their running time is propor-
tional to the number of elements in the range. More formally, we say the running
time of these algorithms is Θ(n)where n is the number of elements in the range.

We will define the notation Θ(n) precisely later in these notes. For now,
we will only consider its intuitive meaning: a running time is Θ(n) when it is
essentially proportional to n. Such a running time is called linear.

The find generic algorithm performs what is called a sequential search of
the range. In case the elements in the range are sorted, the binary search algo-
rithm runs much faster, as long as elements can be accessed quickly.

The STL includes several versions of the binary search algorithm. These are
described in Table 6.6. When given random-access iterators, these algorithms
run in time Θ(log n). (That’s the log in base 2 of n.) This is called logarithmic
time. Since log 106 is about 20, in principle, we can expect a binary search of

162 CHAPTER 6. GENERIC ALGORITHMS

count(start, stop, e)
Returns the number of occurrences of element e in the range
[start,stop). Uses == on elements.

find(start, stop, e)
Returns an iterator to the first occurrence of element e in the range
[start,stop). Returns stop if e is not found. Uses == on ele-
ments.

max_element(start, stop)
min_element(start, stop)

Returns an iterator that points to the maximum or minimum element
in the range [start,stop). Returns stop if the range is empty.
Uses < on elements.

copy(start1, stop1, start2)
Copies the elements in the range [start1,stop1) to a range of
positions that begins at start2. If n is the number of elements that
are copied, returns an iterator that points n positions to the right of
start2. Copies forward, from start1 to stop1. Typically not
useful when start2 falls within the range [start1,stop1).

copy_backward(start1, stop1, stop2)
Copies the elements in the range [start1,stop1) to a range of
positions immediately to the left of stop2. If n is the number of ele-
ments that are copied, returns an iterator that points n positions to the
left of stop2. Copies backward, from stop1 to start1. Normally
used instead of copy when start2 falls within [start1,stop1).

Table 6.4: Some generic sequence algorithms (part 1 of 2)

6.5. ALGORITHMS IN THE STL 163

fill(start, stop, e)
Sets all the elements in the range [start,stop) to be copies of
element e.

replace(start, stop, x, y)
Replaces all occurrences of element x by a copy of element y in the
range [start,stop). Uses == on elements.

reverse(start, stop)
Reverses the order of the elements in the range [start,stop).

Table 6.5: Some generic sequence algorithms (part 2 of 2)

a vector of size one million to run about 50,000 times faster than a sequential
search. That would be the difference between one millisecond and almost one
minute.

Table 6.6 also includes a description of the generic algorithm sort we men-
tioned earlier in this chapter. This algorithm requires random-access iterators
and runs in time Θ(n log n). In comparison, the simplest sorting algorithms all
run in time Θ(n2). Once again, in principle, we can expect the generic algorithm
sort to run about 50,000 faster than these simple sorting algorithms on a vec-
tor of size one million. That would be the difference between one second and
about 14 hours. (We will study searching and sorting algorithms in more detail
later in these notes.)

Table 6.7 lists some other useful generic algorithms that are typically used
on non-container arguments. The max algorithm, which we have seen earlier,
can be used on any type of value that supports the less-than operator (<). For
example, it can be used on integers and on C++ strings. But it can’t be used
on C strings because the < operator does not work properly on C strings. And it

164 CHAPTER 6. GENERIC ALGORITHMS

binary_search(start, stop, e)
lower_bound(start, stop, e)
upper_bound(start, stop, e)

Performs a binary search in the range [start,stop). Assumes that
the range is sorted with respect to <. Uses < on elements. The first
version returns true if element e is present in the range. Otherwise,
it returns false. The second version returns an iterator that points to
the first position where e could be inserted in the range while preserv-
ing the order. The third version returns an iterator that points to the
last such position. All versions run in time Θ(log n) if the arguments
are random-access iterators. If the arguments are only bidirectional
iterators, the running time is Θ(n).

sort(start, stop)
Sorts the elements in the range [start,stop) using the < operator.
Requires random-access iterators. Runs in time Θ(n log n).

Table 6.6: Some generic algorithms for searching and sorting

6.5. ALGORITHMS IN THE STL 165

swap(x, y)
Swaps the values of x and y.

max(x, y)
min(x, y)
max({elements})
min({elements})

Returns the maximum or minimum of the given elements. Uses < to
compare elements.

advance(itr, n)
Advances itr by n positions. n can be negative. Uses + or − once
if the iterator is random-access. Otherwise, uses ++ or −− repeatedly
and therefore runs in time Θ(n).

distance(itr1, itr2)
Returns the distance from itr1 to itr2, in elements. Uses − once if
the iterators are random-access. Otherwise, uses ++ or −− on itr1
until it reaches itr2, which gives a Θ(n) running time. Assumes that
itr2 is reachable from itr1.

Table 6.7: Some other generic algorithms

166 CHAPTER 6. GENERIC ALGORITHMS

can’t be used on literal strings either (e.g., "abc") because those are stored as
C strings.2 One way around this is to explicitly convert the C strings into C++
strings, as in

max(string("abc"), string("xy"))

Another solution is to tell the compiler that we want to use the max algorithm
on C++ strings:

max<string>("abc", "xy")

The compiler will then perform an implicit conversion of the C strings to C++
strings. The notation max<string> will make more sense after we learn to
implement generic algorithms in the next section.

Table 6.7 also includes generic algorithms that operate on iterators. These
algorithms provide the same functionality as the + and − operations of random-
access iterators but they can also be used on bidirectional iterators. When used
with random-access iterators, these algorithms run in constant time (Θ(1)).
When used with bidirectional iterators, the algorithms run in linear time.

The generic algorithm swap is defined in the library file utility. The
generic algorithms advance and distance are defined in the library file
iterator. The other STL generic algorithms are all defined in the library file
algorithm. All of them are part of the std namespace.

Study Questions

6.5.1. What is the intuitive meaning of Θ(n)?

2Actually, calling max on two C strings of different lengths may result in a compiler error
because the C strings would be stored in arrays of different lengths and the max algorithm
requires that its arguments be of the same type.

6.6. IMPLEMENTING GENERIC ALGORITHMS 167

inline const int & max(const int & x, const int & y)
{

return (x < y ? y : x);
}

Figure 6.2: An integer version of the max algorithm

6.5.2. How does the running time of a binary search compare to that of a se-
quential search?

6.5.3. What is the running time of the generic algorithm sort?

Exercises

6.5.4. Explain why the generic algorithm copy is typically not useful when
start2 falls within the range [start1,stop1)?

6.5.5. Experiment with the STL searching and sorting algorithms by writing a
test driver that uses all the algorithms shown in Table 6.6. To see the
difference between lower_bound and upper_bound, make sure you
search for an element that occurs multiple times in the sequence.

6.6 Implementing Generic Algorithms

In this section, we will learn how to implement generic algorithms. Recall that
this means algorithms that can be used on arguments of more than one type.

Consider the max generic algorithm. Figure 6.2 shows an implementation
of an integer version of this algorithm. If ever we needed a version for another

168 CHAPTER 6. GENERIC ALGORITHMS

inline const string & max(const string & x,
const string & y)

{
return (x < y ? y : x);

}

Figure 6.3: A string version of the max algorithm

template <typename T>
inline const T & max(const T & x, const T & y)
{

return (x < y ? y : x);
}

Figure 6.4: A template for the max algorithm

type of argument, all we would have to do is replace the three occurrences of
int by the other type. For example, Figure 6.3 shows a string version.

To simplify this process, and to reduce the risk of errors, we could explicitly
identify the types that must be changed to produce a new version of the algo-
rithm, as shown in Figure 6.4. The result is a template in which the generic
name T is used for the type of value being compared. To make things clear,
the template definition begins with a declaration that identifies T as a template
parameter. Then, whenever a version of max is needed for a particular type of
value, all we have to do is copy the template and replace every occurrence of T
by the desired type.

What we just described is a fairly mechanical process that’s a good candidate
for automation. And, in fact, C++ compilers can do just that. When, for exam-
ple, max is called with integer arguments, the compiler looks for a max function

6.6. IMPLEMENTING GENERIC ALGORITHMS 169

// Prints the elements of v to cout, one per line,
// separated by a single space.
// Requirement on T: values can be printed to cout by
// using the output operator (<<).
template <typename T>
void println(const vector<T> & v)
{

for (const T & e : v) cout << e << ’ ’;
cout << ’\n’;

}

Figure 6.5: The generic function println

that can take two integers as argument. When that fails, the compiler then looks
for a template that can be used to generate such a function. The template of Fig-
ure 6.4 will work if T is set to int. The process of generating a function out of
a template is called template instantiation.3

Strictly speaking, a function template is not a function but we can think of
it as a generic function, that is, a function that can work on more than one
type of argument. The creation of generic functions is an example of generic
programming, the writing of code that can be used on a variety of data types.
We will soon learn that classes, too, can be generic.4

Another example of a generic function is shown in Figure 6.5. As docu-
mented there, it’s a function that prints the contents of a vector on a single line.

3The template declaration of Figure 6.4 uses the keyword typename to declare the template
parameter T. An alternative is to use the keyword class. This is allowed even if the type may
not be a class. Although the keyword typename is more accurate, the use of the keyword
class is widespread.

4In fact, Bjarne Stroustrup, the original designer of C++, describes the language as a better
C that supports data abstraction, object-oriented programming and generic programming [Str].

170 CHAPTER 6. GENERIC ALGORITHMS

template <class Iterator, class T>
int count(Iterator start, Iterator stop, const T & e)
{

int count = 0;
for (Iterator itr = start; itr != stop; ++itr) {

if (∗itr == e) ++count;
}
return count;

}

Figure 6.6: An implementation of the generic algorithm count

The documentation also clearly states a condition that the type T must meet. It
is important to clearly identify such requirements when designing generic func-
tions. (In the case of the generic algorithm max, this was done for us by the
C++ standard. See [CPP], for example.)

Figure 6.6 shows an implementation of the generic algorithm count. Note
that this template has two parameters, one for the type of iterator and one for
the type of element these iterators point to.

You may have noticed that in our implementation of count, the iterator ar-
guments are passed by value. Up until now, we have been using the general
rule that only small primitive values such as integers should be passed by value.
Iterators often contain data that’s no larger than a single integer, but not always.
Still, it is generally better to pass iterators by value. The reason is that iterator
arguments tend to be used repeatedly and accessing an iterator through a refer-
ence takes longer than accessing it directly. For example, in our implementation
of count, if the number of elements in the range is n, then the iterator stop
will be accessed n+1 times. It is more efficient to copy stop once when passing
it as argument and then be able to directly access a copy of it. Therefore, as a

6.6. IMPLEMENTING GENERIC ALGORITHMS 171

namespace my {

... (your code)

} // namespace my

Figure 6.7: A namespace

general rule, we will always pass iterator arguments by value. The STL does the
same.

The exercises of this section ask you to create your own implementations of
various STL algorithms. To avoid possible conflicts with your compiler’s imple-
mentations, and to allow you to choose which implementation you want to use
in a particular piece of code, it is best to place your implementations in your
own namespace, as shown in Figure 6.7. Then, to use your own implementa-
tion of count, for example, you would specify the namespace when calling the
function (my::count) or you would include a using declaration in your code
(using my::count).

Note that if the algorithm library is included in your code and you
use count on a vector, for example, then the compiler will consider using
std::count because it is in the same namespace as the class vector. This
is a consequence of what is known as argument-dependent lookup. In that case,
a declaration such as using my::count will cause the compiler to complain
that the call to count is ambiguous. This simply means that the compiler doesn’t
know which version of count to use. In such a situation, you must specify the
namespace when calling the function.5

5As of March 2016, in the version of g++ that comes with the latest version of Code::Blocks,
the string library includes the library file that contains the implementation of the algorithm

172 CHAPTER 6. GENERIC ALGORITHMS

Study Questions

6.6.1. What is a generic function?

6.6.2. What C++ construct allows us to implement generic functions?

6.6.3. What is generic programming?

Exercises

6.6.4. Implement your own version of the following generic algorithms.

a) swap.

b) max_element.

c) copy.

d) copy_backward.

e) reverse. Hint: Make sure you consider sequences of even and odd
length.

6.7 Initializer Lists

Table 6.7 includes a version of the max STL algorithm that takes an initializer
list as argument:

max({elements})

We saw initializers lists earlier in these notes, as argument to one of the vector
constructors:

max. This means that this ambiguity problem occurs with max and strings even if you don’t
include the algorithm library in your code.

6.7. INITIALIZER LISTS 173

template <typename T>
inline T max(initializer_list<T> init_list)
{

return ∗max_element(init_list.begin(),
init_list.end());

}

Figure 6.8: An initializer-list version of the max algorithm

vector<T> v({elements})

As we said back then, when such a list is specified by using braces, the elements
should be separated by commas as in {1, 2, 3}.

In this section, we will learn how to implement the initializer-list version of
max. In the process, we will learn the basics of how to program with initializer
lists. We will use this knowledge again later when we learn how to implement
our own class of vectors.

To create a version of max that takes an initializer list as argument,
all we need to do is create a version of max that takes an object of class
initializer_list as argument. A possible implementation is shown in Fig-
ure 6.8. This implementation uses the STL algorithm max_element.

The class initializer_list is generic. Therefore, just as in the case
of vector, we need to specify the type of element stored in the initializer list.
Initializer lists provide very limited functionality. In fact, they only support three
methods: size, begin and end. Initializer-list iterators are random-access
iterators.

You may have noticed that in our implementation of max, the initializer list
argument is passed by value. Once again, this seems to violate the general rule
that only small primitive values such as integers should be passed by value. But

174 CHAPTER 6. GENERIC ALGORITHMS

note that when an initializer list is copied, the copy is shallow: the elements
are not copied, all that is copied is a reference to the elements. (Recall that
we encountered the concept of a shallow copy in our discussion of arrays in
Sect. 5.5.) This is in contract to the copying of vectors, which is always deep, in
the sense that every element is copied. What this implies is that initializer lists
can be copied quickly. And, as is the case with iterators, it is faster to directly
access a copy of the list than to access the list through a reference. Therefore,
just like iterators, initializer lists are normally passed by copy. We will follow
this rule and the STL does too.

The class initializer_list is defined in library file
initializer_list, which is included in library file utility. The
class is part of the std namespace.

Study Questions

6.7.1. What three operations are supported by initializer lists?

Exercises

6.7.2. Create a generic function print(init_list, out) that prints the el-
ements of initializer list init_list to output stream out. The elements
are printed on separate lines.

6.8 Functions as Arguments

Section 6.5 described several STL algorithms. But the STL includes more general
versions of some of these algorithms. For example, we know that

count(start, stop, e)

6.8. FUNCTIONS AS ARGUMENTS 175

counts the number of elements that are equal to e. But the more general

count_if(start, stop, condition)

counts the number of elements that meet the given condition. The
condition argument should be a unary predicate, that is, a Boolean function
that takes a single argument. The count_if algorithm applies this function
to each of the elements in the range and counts how many of them cause the
function to evaluate to true.

For example, suppose that we want to count the number of positive elements
in a vector of integers. We would first create a function that tests if an integer is
positive:

inline bool is_positive(int x) { return x > 0; }

Then, we would call count_if with that function:

count_if(v.begin(), v.end(), is_positive)

This will cause is_positive to be called on each element of v. The number
of elements that satisfy is_positive (that is, that cause is_positive to
return true) will be returned by count_if.

Now, how can this be implemented? How can functions be passed to other
functions as arguments? In C++, the most basic way of passing functions
as arguments is somewhat messy. A more general and cleaner approach is
to use generic programming. For example, Figure 6.9 shows an implementa-
tion of the generic algorithm count_if. When this function is called with a
function as its third argument, the compiler will set the template parameter
UnaryPredicate to the appropriate type. We don’t even need to know what
that is.

176 CHAPTER 6. GENERIC ALGORITHMS

template <class Iterator, class UnaryPredicate>
int count_if(Iterator start, Iterator stop,

UnaryPredicate condition)
{

int count = 0;
for (Iterator itr = start; itr != stop; ++itr) {

if (condition(∗itr)) ++count;
}
return count;

}

Figure 6.9: An implementation of the generic algorithm count_if

Tables 6.8 and 6.9 list some generic algorithms that take functions as argu-
ments. In all cases, these algorithms are generalizations of algorithms we saw in
Section 6.5. Many other algorithms are described in a reference such as [CPP].

Study Questions

6.8.1. What is one way of passing functions as arguments to another function?

Exercises

6.8.2. Create a unary predicate is_even that determines if its integer argu-
ment is even. Then use it to count the number of even elements in some
vector of integers.

6.8.3. Create a function shorter_than that takes two strings s1 and s2 as
arguments and evaluates to true if the s1 is shorter than s2, or if s1 and

6.8. FUNCTIONS AS ARGUMENTS 177

count_if(start, stop, condition)
Like count but only counts the number of elements that satisfy the
unary predicate condition.

find_if(start, stop, condition)
Like find but searches for the first element that satisfies the unary
predicate condition.

copy_if(start, stop, dest_begin, condition)
Like copy but only copies elements that satisfy the unary predicate
condition.

replace_if(start, stop, condition, y)
Like replace but replaces by y only the elements that satisfy the
unary predicate condition.

for_each(start, stop, f)
Calls the unary function f on each element in the range
[start,stop), in order. Returns the function.

Table 6.8: Some generic algorithms that take functions as arguments (part 1
of 2)

178 CHAPTER 6. GENERIC ALGORITHMS

max_element(start, stop, compare)
min_element(start, stop, compare)
binary_search(start, stop, e, compare)
lower_bound(start, stop, e, compare)
upper_bound(start, stop, e, compare)
sort(start, stop, compare)
max(x, y, compare)
min(x, y, compare)
max({elements}, compare)
min({elements}, compare)

Like the earlier version but uses the binary predicate compare instead
of the operator <.

Table 6.9: Some generic algorithms that take functions as arguments (part 2
of 2)

6.9. FUNCTION OBJECTS 179

s2 are of the same length and s1 < s2. Then use the function to sort a
vector of strings according to this ordering.

6.8.4. Implement your own version of the following generic algorithms.

a) find_if.

b) replace_if.

c) The version of max_element that takes a comparison function as
argument.

d) copy_if.

e) for_each.

6.9 Function Objects

Continuing the example of the previous section, suppose that we now want to
count the number of elements that are greater than some threshold t whose
value is to be determined at run time. One idea is to define a unary predi-
cate is_large(x) that evaluates to true is x is larger than t. But how is
is_large going to have access to t? We can’t pass t to is_large as an ar-
gument because the function needs to be a unary predicate. One solution would
be for t to be a global variable. As we know, this is less than ideal.

A better solution is to create a class of objects that can each be initialized with
their own value of t and then act as an is_large function for that particular
value of t. Such a class is shown in Figure 6.10. Suppose that is_large is of
class IsLarge and initialized with t, as in

IsLarge is_large(t);

180 CHAPTER 6. GENERIC ALGORITHMS

class IsLarge
{
public:

IsLarge(int t0) : t(t0) {}
bool operator()(int x) { return x > t; }

private:
int t;

};

Figure 6.10: A class of function objects

Then, because of the overloading of the function call operator (the operator ()),
is_large will act as a “greater than t” function. That is, is_large(x) will
return true if x > t. Because these objects act as functions, we call them
function objects.

To count the number of elements greater than t, all we now need to do is
create an IsLarge function object initialized with t and call count_if with
that function object:

count_if(v.begin(), v.end(), IsLarge(t))

This works for integers but it also works for any other type of value that can
be compared by using the greater-than operator. So it makes sense to turn the
class IsLarge into a template, as shown in Figure 6.11. Then, if v is a vector
with elements of type T and t is a value of type T,

count_if(v.begin(), v.end(), IsLarge<T>(t))

will return the number of elements in v that are greater than t. This will work
for any type T that supports the greater-than operator.

6.9. FUNCTION OBJECTS 181

// Requirement on T: values can be compared by using
// the > operator.
template <class T>
class IsLarge
{
public:

IsLarge(const T & t0) : t(t0) {}
bool operator()(const T & x) { return x > t; }

private:
T t;

};

Figure 6.11: A generic class of function objects

Note that when creating an object whose type is given by a class template,
the template parameters must be specified explicitly: IsLarge<T>(t). This
is in contrast with a call to a generic function such as max(x, y). In that case,
the compiler can usually figure out how to instantiate the template arguments
from the type of arguments provided.

All the STL generic algorithms, including those listed in Tables 6.8 and 6.9,
work with either functions or function objects as arguments. This is simply a
consequence of the fact that generic programming allows us to pass functions
and function objects as arguments in exactly the same way. For example, the
function count_if shown in Figure 6.9 can accept as its third argument any
type of value that behaves as a unary Boolean function, including plain functions
as well as function objects.

The STL defines several classes of standard function objects. For example,
function objects of class greater act as the greater-than operator. That is, if
compare is of class greater, then compare(x,y) returns true if x > y.

182 CHAPTER 6. GENERIC ALGORITHMS

These functions objects can be used, for example, to sort a vector of integers in
decreasing order:

sort(v.begin(), v.end(), greater<int>())

Note again that the type must be specified explicitly when creating the function
object.

Another example is the class of function objects multiplies. These act as
the binary multiplication operator. A sample application is in conjunction with
the accumulate generic algorithm. The basic version

accumulate(start, stop, initial_value)

returns the result of adding all the elements of the range to initial_value.
The more general version

accumulate(start, stop, initial_value, binary_op)

does the same thing but uses binary_op instead of the addition operator. For
example,

accumulate(v.begin(), v.end(), 1, multiplies<int>())

returns the product of all the elements in vector of integers.
The standard function objects are defined in the library file functional.

The accumulate generic algorithm is defined in the library file numeric. All
are part of the std namespace.

Study Questions

6.9.1. What is a function object?

6.9. FUNCTION OBJECTS 183

Exercises

6.9.2. Create a class of function objects IsMultiple that satisfies the follow-
ing specification: when initialized with integer m, an object of this class
behaves as a unary predicate that determines if its integer argument is a
multiple of m. Then use one of these function objects to count the number
of multiples of 3 in some vector of integers.

184 CHAPTER 6. GENERIC ALGORITHMS

Chapter 7

Linked Lists

A linked list holds a sequence of elements all of the same type, just like a vector
or an array. But linked lists can grow and shrink more efficiently. This makes
them the data structure of choice for certain applications. In this chapter, we
will learn what linked lists are and how to use them. The implementation of
linked lists will be covered in a later chapter.

7.1 A Simple Text Editor

We will illustrate the usefulness of linked lists by designing and implementing a
simple text editor. This editor will mostly be an extension of the file viewer we
created in Chapter 5. The editor will allow the user not only to view the contents
of a file but also to modify the contents of the file. More precisely, the user will
be able to add, remove and replace entire lines of text. But the user won’t be
able to edit the contents of individual lines. For example, the user won’t be able
to insert a word directly in the middle of a line. The only way to accomplish this
will be by replacing the entire line by a new one.

185

186 CHAPTER 7. LINKED LISTS

Here are more details on how the editor works. Like the file viewer, the edi-
tor has a buffer that contains lines of text, usually an edited copy of the contents
of some file. The editor displays the name of the file, if any, followed by a certain
number of lines from the buffer, surrounded by a border. A cursor indicates the
position of the current line. Below the text, a menu of commands is displayed
followed by the prompt “choice:”. The user types the first letter of a com-
mand, the command executes and everything is redisplayed. Some commands
prompt the user for more information. Figure 7.1 shows what the user interface
looks like. The available editor commands are described in Figure 7.2.

Note that the displayed contents of the buffer always includes an extra empty
line we will call the end line. In Figure 7.1, the end line is the one numbered
9. That line is not really part of the buffer but the cursor can move there. This
allows the user to insert a new line at the end of the buffer. In addition, in the
case of an empty buffer, the end line gives the cursor something to point to.

In this chapter, we will create two versions of the text editor. The only dif-
ference between these two versions will be the way in which the contents of the
buffer is stored. The first version will use a vector. We will then discuss if this is
really the best choice and discover an alternative: the linked list.

7.2 Vector Version of the Text Editor

The general behavior of the text editor was described in the previous section but
several details still need to be specified. For example, what should the next

command do if the current line is the end line? What line should be the current
one after an insert? What should happen if a file doesn’t open? One possible
specification is shown in Figures 7.3 to 7.7. It includes answers to these ques-
tions as well as several other details.

A vector version of the text editor can be created by expanding the file viewer

7.2. VECTOR VERSION OF THE TEXT EDITOR 187

co−op.txt
−−

1 List for Co−op
2
3 bread
4 yogurt

> 5 cumin
6 black beans
7 chick pea flour
8 toothpaste
9

−−
next jump insert open quit
previous replace delete save

−−−−−−−
choice: i
new line: ginger

Figure 7.1: Sample user interface of the text editor

188 CHAPTER 7. LINKED LISTS

next The next line becomes the current line.

previous The previous line becomes the current line.

jump Asks for a line number and makes that line become the
current line.

replace Asks for a new line and replaces the current line.

insert Asks for a new line and inserts it before the current line.

delete Deletes the current line.

open Asks for a file name and reads that file into the buffer.

save Asks for a file name and saves the contents of the buffer to
that file.

quit Stops the editor.

Figure 7.2: The commands of the text editor

7.2. VECTOR VERSION OF THE TEXT EDITOR 189

OVERVIEW

A simple text editor that allows the user to add,
remove and replace entire lines of text. It doesn’t
allow the user to edit the contents of the lines. (The
only way to accomplish this is to replace the entire
line by a new one.)

DETAILS

The editor has a buffer that contains lines of text,
usually an edited copy of the contents of some file.
The editor interacts with the user as shown in the
following example:

Figure 7.3: Specification of the text editor (part 1 of 5)

190 CHAPTER 7. LINKED LISTS

co−op.txt
−−

1 List for Co−op
2
3 bread
4 yogurt

> 5 cumin
6 black beans
7 chick pea flour
8 toothpaste
9

−−
next jump insert open quit
previous replace delete save

−−−−−−−
choice: i
new line: ginger

The program begins by asking the user for a window
height. This is the maximum number of lines that will
be displayed at any time. The displayed lines are
numbered starting at 1 for the first line of the file.
If the number of lines on the last page is smaller
than the window height, the rest of the window is
filled with unnumbered empty lines.

Figure 7.4: Specification of the text editor (part 2 of 5)

7.2. VECTOR VERSION OF THE TEXT EDITOR 191

Buffer lines are displayed between two lines of 50
dashes. The name of the file is printed above the
first line of dashes. A cursor (>) indicates the
position of the current line. Below the second line of
dashes, a menu of commands is displayed. Below that
menu, the prompt "choice:" is displayed. The user
types the first letter of a command, the command
executes and everything is redisplayed. Some commands
prompt the user for more information.

The displayed contents of the buffer always includes
an extra empty line that we call the "end line". That
line is not really part of the buffer but the cursor
can move there. This is how the user would insert a
new line at the end of the buffer. This is also the
line that the crusor points to when the buffer is
empty.

Here is a description of the various commands:

next: The next line becomes the current line. Does
nothing if the current line is the end line.

previous: The previous line becomes the current line.
Does nothing if the current line is the first one.

Figure 7.5: Specification of the text editor (part 3 of 5)

192 CHAPTER 7. LINKED LISTS

jump: Asks for a line number (with prompt "line
number:") and makes that line become the current line.
The new current line is displayed at the top. If the
user enters an invalid line number N, the message
"ERROR: N is not a valid line number" is displayed
just before the file name is redisplayed.

replace: Asks for a new line (with prompt "new line:")
and replaces the current line.

insert: Asks for a new line (with prompt "new line:")
and inserts it before the current line. The line that
follows the new one becomes the current one. (This
makes it easy to add a sequence of new lines, in
order.)

delete: Deletes the current line. The next line
becomes the current one. Nothing happens if the user
tries to delete the end line.

open: Asks for a file name (with prompt "file name:")
and reads that file into the buffer. If a file named X
does not open, the message "ERROR: Could not open X"
is displayed just before the file name is redisplayed.

save: Asks for a file name (with prompt "file name:")
and saves the contents of the buffer to that file. If
a file named X does not open, the message "ERROR:
Could not open X" is displayed just before the file
name is redisplayed.

Figure 7.6: Specification of the text editor (part 4 of 5)

7.2. VECTOR VERSION OF THE TEXT EDITOR 193

quit: Stops the editor.

NOTES FOR LATER VERSIONS

open and quit should check if the buffer has been
saved.

Add more error−checking. (Check that commands are
entered properly and that the window height is a
positive integer.)

Figure 7.7: Specification of the text editor (part 4 of 5)

program we created in Chapter 5. The design of the program will be similar. A
TextEditor component will perform the overall control of the program as well
as most of the user interaction. A Buffer component will handle the storage
of the buffer and the execution of the commands.

The text editor can be implemented by extending the implementation of the
file viewer. In this section, we will highlight the new code. Figure 7.8 shows the
declaration of the Buffer class. In addition to keeping track of the index of
the top line, the Buffer also keeps track of the index of the current line. Both
indices are initialized to 0. Figures 7.9 and 7.10 show the implementation of
the Buffer methods that are new to the text editor.

The complete source code and documentation of this version of the text ed-
itor are available on the course web site under TextEditor1.0.

194 CHAPTER 7. LINKED LISTS

class Buffer
{
public:

void display() const;
void erase();
const std::string & get_file_name() const {

return file_name;
}
void insert(const std::string & new_line);
void move_to_next_line();
void move_to_previous_line();
bool open(const std::string & new_file_name);
bool save(const std::string & new_file_name);
void set_window_height(int h) {

window_height = h;
}

private:
std::vector<std::string> v_lines;
int ix_current_line = 0;
int ix_top_line = 0;
std::string file_name;
int window_height;

};

Figure 7.8: Declaration of Buffer

7.2. VECTOR VERSION OF THE TEXT EDITOR 195

inline void Buffer::erase()
{

if (ix_current_line < v_lines.size())
v_lines.erase(v_lines.begin() +

ix_current_line);
}

inline void Buffer::insert(
const std::string & new_line)

{
v_lines.insert(v_lines.begin() +

ix_current_line, new_line);
move_to_next_line();

}

inline void Buffer::move_to_next_line()
{

if (ix_current_line < v_lines.size()) {
++ix_current_line;
// check if window needs to be scrolled down
if (ix_current_line >=

ix_top_line + window_height)
++ix_top_line;

}
}

Figure 7.9: Implementation of some of the Buffer methods (part 1 of 2)

196 CHAPTER 7. LINKED LISTS

inline void Buffer::move_to_previous_line()
{

if (ix_current_line > 0) {
−−ix_current_line;
// check if window needs to be scrolled up
if (ix_current_line < ix_top_line)

−−ix_top_line;
}

}

bool Buffer::save(const string & new_file_name)
{

std::ofstream file(new_file_name);
if (!file) return false;

file_name = new_file_name;
for (const string & s : v_lines) file << s << ’\n’;
return true;

}

Figure 7.10: Implementation of some of the Buffer methods (part 2 of 2)

7.2. VECTOR VERSION OF THE TEXT EDITOR 197

Exercises

7.2.1. Modify the text editor as described below. Change the original specifica-
tion, design and implementation as little as possible.

a) Implement the replace command.

b) Implement the jump command. Refer to the program specification
for details on this command’s behavior.

c) Modify the save command so it uses the current file, if any, as a default
value. If the user enters an empty file name, then the default is used.

d) Add a clear command that empties the buffer. The command also
resets the file name so that the string <no file opened> is dis-
played just like when the program is started.

e) Add Next and Previous commands that cause the editor to display the
next or previous “pages”, just like the next and previous commands of
the file viewer. After these commands are executed, the new top line
becomes the current line.

f) Add an Append command that inserts a new line after the current
one. Make sure you consider special cases.

g) The quit command currently stops the editor without ensuring that
the buffer was saved to a file. Similarly, the open and clear commands
delete the current contents of the buffer without ensuring that this
contents has been saved. Fix this. In case the buffer has not been
saved since it was last modified, clear, open and quit should ask the
user if he or she wants to save the current contents of the buffer. Hint:
Add a Boolean variable to the buffer that indicates if the buffer was
saved since the last modification.

198 CHAPTER 7. LINKED LISTS

h) Add a search command that asks the user for a string and finds the
first line that contains that string. The search starts at the current
line and stops at the end of the file. If the string is found, the line
that contains it becomes the current line and is displayed at the top.
In case the user enters a string X that does not occur in the file, the
program should print the error message ERROR: string "X" was not
found.

i) Modify the search command so that the search wraps around to the
beginning of the file when the end of the file is reached.

j) Add an again command that repeats the last search. If that last search
was the previous command, then the new search starts at the second
line that is currently displayed. If no search has been previously per-
formed, then the again command asks the user for a string.

7.2.2. Add more error checking to the file viewer. Change the program as little
as possible.

a) Make the program check that the user enters a positive integer as the
window height. If not, the program should print an error message
and ask again.

b) Make the program check that the user enters either the whole name
of a command or the first letter of the command. If the user enters
an invalid command X, the program should print the error message
ERROR: X is not a valid command. The error message should be dis-
played at the top of the window, just like when a file does not open.

7.3. VECTORS AND LINKED LISTS 199

7.3 Vectors and Linked Lists

In the previous section, we used a vector to store the contents of the buffer in
the text editor. But is this really a good choice? An important issue is the impact
that the use of a vector has on the running time of the various editor commands.

Some of the editor commands can be implemented quickly. For example, the
next command runs in constant time since, as we saw in the previous section,
all it does is essentially add 1 to the index of the current line.

Other commands, however, require much more work. The insert command
uses the vector method insert but, in the worst case, that method runs in
linear time. Here’s why. The vector indexing operator runs in constant time.
This is normally achieved by storing the elements of a vector side-by-side in the
computer’s memory. But a consequence of this is that inserting a new element
in the middle of the vector requires moving, one position to the right, all the
elements of the vector, from the insertion point to the end.

Table 7.1 lists all the commands of the text editor. The second column of
Table 7.1 shows the running times of all the editor commands when the buffer
lines are stored in a vector. In this table, n stands for the number of lines in the
buffer (plus those in the file, in the case of open).

The running time of the fast commands such as next and replace cannot be
improved significantly. The linear running time of open and save is probably
something we have to live with since these commands require reading or writing
every single line of the document. But do insert and delete really need to take
linear time?

Since the linear running time of these methods is caused by the fact the buffer
lines are stored side-by-side in the computer’s memory, an idea for a new data
structure would therefore be not to store buffer lines side-by-side in the com-
puter’s memory. Instead, we could try to scatter these lines in the computer’s

200 CHAPTER 7. LINKED LISTS

vector linked list

next Θ(1) Θ(1)

previous Θ(1) Θ(1)

jump Θ(1) Θ(n)

replace Θ(1) Θ(1)

insert Θ(n) Θ(1)

delete Θ(n) Θ(1)

open Θ(n) Θ(n)

save Θ(n) Θ(n)

quit Θ(1) Θ(1)

Table 7.1: Running time of the editor commands

7.3. VECTORS AND LINKED LISTS 201

memory and then somehow link them to each other. These links would be se-
quential in the sense that each line would be linked to the next one and to the
previous one. We would maintain a link to the current line. Given this link,
inserting a new line could be done quickly since it would only require modifying
the links of the current and previous lines.

The idea we just described is that of a data structure known as the linked list.
Later in these notes, we will learn how to implement linked lists. In this chapter,
we will learn to use the STL container list, which is a class of linked lists.

The main advantage of linked lists is that inserting or deleting an element
at a given position can be done quickly, as long as we have a direct link to the
element at that position. However, accessing an element given its index requires
traversing the list from the beginning, counting elements until the desired one
is reached. The third column of Table 7.1 shows the running times that can be
achieved in our text editor if we use a linked list to store the lines of text in the
buffer.

We clearly have a trade-off: we can have fast jumps or fast insertions and
deletions, but not both. In the case of a text editor, it is reasonable to assume
that insertions and deletions are more frequent than jumps, and that users are
willing to accept that jumps require some “travel time”. Therefore, a linked list
is probably a better choice for a text editor.

Study Questions

7.3.1. What is the key difference between vectors and linked lists?

202 CHAPTER 7. LINKED LISTS

7.4 Linked Lists in the STL

The STL includes a class of linked lists that is simply called list. Just like
vectors, STL lists are generic: even though each list holds a sequence of elements
all of the same type, this type can be pretty much anything so that we can create
lists of integers, lists of strings, lists of times, etc.

Tables 7.2 to 7.4 show some of the most basic list operations. (The methods
begin, end and their usual variations are not included.) The running time of
the operations is also indicated. Unless otherwise specified, the parameter n is
the initial number of elements held by the receiver.

Note that STL lists don’t provide an indexing operator or any other method
that gives access to an element given its index. This is because such an oper-
ation would be inefficient as it would require the list to be traversed from the
beginning. Given an index i, it’s still possible to set an iterator to point to the
element with index i:

itr = ls.begin();
advance(itr, i);

But this code runs in time linear in the value of i and lists don’t provide the
convenience of an indexing operator: in situations where such an operation is
frequently needed, a vector should probably be used instead.

Note that list iterators are bidirectional iterators. Recall that this means that
they support the operations ∗,−>, ++,−−, == and !=, but not the random-access
operations +i, −i, −, < and [i].

The list container is defined in library file list and included in the std
namespace. STL lists include several additional operations that are described in
a reference such as [CPP].

7.4. LINKED LISTS IN THE STL 203

list<T> ls
list<T> ls(n)
list<T> ls(n, e)
list<T> ls({elements})
list<T> ls(start, stop)
list<T> ls(ls2)

Creates a list ls that can hold elements of type T. The list is initialized
to be empty, or to contain n value-initialized elements of type T, or
n copies of element e, or copies of the given elements, or copies
of all the elements in the range [start, stop), or copies of all the
elements of list ls2. Θ(1) for the first constructor, Θ(n) for the others.
In the case of the last three constructors, n is the size of the argument.

ls.size()
Asks list ls for the number of elements it currently contains. Θ(1).

ls.empty()
Asks list ls if it is empty. Θ(1).

ls.front()
ls.back()

Asks list ls for a reference to its front or back element. Θ(1).

ls.push_front(e)
ls.push_back(e)

Asks list ls to add a copy of element e to its front or back. Θ(1).

ls.pop_front()
ls.pop_back()

Asks list ls to delete its first or last element. Θ(1).

Table 7.2: Some list operations (part 1 of 2)

204 CHAPTER 7. LINKED LISTS

ls1 = ls2
ls1 = {elements}

Makes list ls1 contain copies of all the elements of list ls2, or copies
of the given elements. Returns a reference to ls1. Θ(n), where n
is the total size of ls1 and ls2.

ls1.swap(ls2)
Asks list ls1 to swap contents with list ls2. Θ(1).

ls.assign(n, e)
ls.assign({elements})
ls.assign(start, stop)

Asks list ls to change its contents to n copies of element e, or to copies
of the given elements, or to a copy of all the elements in the range
[start, stop). Θ(m), where m is the greater of the initial size and
the new size of ls.

ls.resize(n)
ls.resize(n, e)

Asks list ls to change its size to n. If n is smaller than the current
size of ls, the last elements of ls are deleted. If n is larger than the
current size, then ls is padded with either copies of the default object
of class T or with copies of element e. Θ(k), where k is the number
of elements deleted or inserted.

Table 7.3: Some list operations (part 2 of 3)

7.4. LINKED LISTS IN THE STL 205

ls.insert(itr, e)
Asks list ls to insert, at the position indicated by the iterator itr,
a copy of element e. An iterator that points to the new element is
returned. Θ(1).

ls.insert(itr, {elements})
ls.insert(itr, start, stop)

Asks list ls to insert, at the position indicated by the iterator itr,
copies of the given elements, or copies of all the elements in the
range [start, stop). An iterator that points to the first new element
is returned. Θ(k), where k is the number of elements inserted.

ls.erase(itr)
Asks list ls to delete the element that itr points to. An iterator that
points to the next element is returned. Θ(1).

ls.erase(start, stop)
Asks list ls to delete all the elements in the range [start, stop).
An iterator that points to the next element is returned. Θ(k), where k
is the number of elements deleted.

ls.remove(e)
ls.remove_if(condition)

Asks list ls to delete all elements that equal e or that satisfies the
unary predicate condition. Θ(n).

ls.clear()
Asks list ls to delete all its elements. Θ(n).

Table 7.4: Some list operations (part 3 of 3)

206 CHAPTER 7. LINKED LISTS

Study Questions

7.4.1. What mechanism is used to specify positions within an STL list?

Exercises

7.4.2. Experiment with lists by writing a test driver that creates more than one
type of list and uses all the methods shown in Tables 7.2 to 7.3.

7.4.3. Create a generic function print(ls) that prints list ls to standard out-
put (cout). Elements are printed on separate lines by using the output
operator (<<).

7.4.4. Create a generic function concatenate(ls1, ls2, result) that
makes list result contain a copy of all the elements of list ls1 followed
by a copy of all the elements of list ls2.

7.4.5. Create a function make_double_spaced(ls) that takes as argument
a list of strings and inserts a new empty string after every string in the list.

7.4.6. Create a generic function insert(ls, itr, start, stop) that
behaves exactly like ls.insert(itr, start, stop). (Don’t use
that version of insert in implementing your function, but you can use
the insert(itr, e) version.)

7.4.7. Create a generic function erase(ls, start, stop) that behaves
exactly like ls.erase(start, stop). (Don’t use that version of
erase in implementing your function, but you can use the erase(itr)
version.)

7.5. LIST VERSION OF THE TEXT EDITOR 207

7.5 List Version of the Text Editor

Because STL vectors and lists have a very similar interface (methods, operators
and constructors), it is fairly easy to transform the vector version of our text
editor so it uses a list instead.

One difference is that in addition to keeping track of the indices of the current
and top lines, Buffer also needs to maintain iterators that point to those lines.
This is to be able to efficiently display the buffer and perform operations at the
location of the current line.

Another significant difference is in the implementation of the Buffer meth-
ods erase and insert. Both are shown in Figure 7.11. In the erase method,
after the deletion, the iterator to the current line needs to be set. In addition,
in case the current line was also the top line, the iterator to the top line also
needs to be set. In the case of insert, the iterator to the current line needs to
be set to point to the new line. The iterator to the top line may also need to be
adjusted.

The complete source code and documentation for the list version of the text
editor is available on the course web site under TextEditor2.0.

Exercises

7.5.1. Repeat Exercise 7.2.1 on the list version of the text editor.

7.5.2. Repeat Exercise 7.2.2 on the list version of the text editor.

208 CHAPTER 7. LINKED LISTS

inline void Buffer::erase()
{

if (ix_current_line < ls_lines.size()) {
itr_current_line =

ls_lines.erase(itr_current_line);
if (ix_top_line == ix_current_line)

itr_top_line = itr_current_line;
}

}

inline void Buffer::insert(
const std::string & new_line)

{
itr_current_line =

ls_lines.insert(itr_current_line, new_line);
if (ix_top_line == ix_current_line)

itr_top_line = itr_current_line;
move_to_next_line();

}

Figure 7.11: The Buffer methods erase and insert

Chapter 8

Maps

In this chapter, we will learn to use maps, another container included in the STL.
As a sample application, we will use maps to create a phone book program.

8.1 A Phone Book

To illustrate the usefulness of maps, we will create a simple phone book program.
Entries in this phone book will consist of only a name and a phone number. The
user will be able to browse the phone book, search for an entry, as well as add,
edit and delete entries.

Figure 8.1 shows what the user interface looks like. The program displays
a single entry. Below the entry, a menu of commands is displayed. Below that
menu, the prompt “command:” is displayed. The user types the first letter of a
command, the command executes and the appropriate entry is displayed. Some
commands prompt the user for more information. The available phone book
commands are described in Figure 8.2. The entries are displayed in alphabetical
order. Note that no entry is displayed if the phone book is empty.

209

210 CHAPTER 8. MAPS

John Smith
123−456−7890
−−

next search edit quit
previous add delete

−−−−−−−
command: e
new number:

Figure 8.1: Sample user interface of the phone book program

next The next entry is displayed. Wraps around.

previous The previous entry is displayed. Wraps around.

search Asks for a name and displays the corresponding entry. If
not found, the earlier entry is redisplayed.

add Asks for a new name and phone number, adds a new entry
to the phone book and displays the new entry.

edit Asks for a new number and edits the current entry. Does
nothing if the phone book is empty.

delete Deletes the current entry. Displays the next one (with pos-
sible wrap-around). Does nothing if the phone book is
empty.

quit Saves the phone book to a file and halts the program.

Figure 8.2: The commands of the phone book

8.1. A PHONE BOOK 211

We will design and implement the phone book later in this chapter. In this
section, we consider one of the main design issues: how should the program
store the entries of the phone book? Between runs of the program, the entries
will need to be stored in a file. But while the program is running, it is much
more efficient to copy the entries into main memory (that is, the variables of the
program).

The simplest idea is to store the entries in alphabetical order in a vector. And
the most convenient way of doing that is to define a class of phone book entries.
Each object in this class will hold the name and number of one entry. We can
then store all the entries in a single vector of entry objects.

In addition, if we make sure the program keeps the phone book entries sorted
by name, then we can search for entries by using the binary search algorithm. If n
is the number of entries in the phone book, searches would run in time Θ(log n),
which is much better than the Θ(n) time we would get with a sequential search.

But adding and removing entries from the phone book would require linear
time. For example, when adding an entry, all existing entries to the right of the
new entry would need to be shifted one position to the right. And there seems
to be no way around this.

There are data structures that give us fast searches, additions and deletions.
One of them is the balanced binary search tree. This is actually a general cate-
gory of data structures that includes, for example, red-black trees and AVL trees.
Balanced binary search trees support all three operations in time Θ(log n).

Another option is the hash table. Hash tables can be implemented in dif-
ferent ways but a simple implementation known as separate chaining supports
searches and deletions in constant time on average. Additions can be performed
in amortized constant time. This means that starting with an empty hash table,
a sequence of n additions will take time that averages to a constant per addition,
if n is large enough. In other words, a sequence of n additions will take time

212 CHAPTER 8. MAPS

search add delete

Sorted vector plus binary search Θ(log n) Θ(n) Θ(n)

Balanced binary search tree Θ(log n) Θ(log n) Θ(log n)

Hash table Θ(1) Θ(1) Θ(1)

Table 8.1: Summary of the various options discussed in this section

Θ(n) in total.
At first glance, hash tables look superior to balanced binary search trees.

However, hash tables require fine tuning that is often application-dependent. In
addition, the worst case running time of the operations is Θ(n). Even though it
is unlikely, it is always possible that a large number of operations will end up
taking that much time. Balanced binary search trees, on the other hand, require
no fine tuning and have guaranteed logarithmic time operations.

Table 8.1 summarizes the three options we have discussed in this section.
The implementation details of the last two data structures are beyond the scope
of these notes.1 But the STL includes a container called map that guarantees the
performance of balanced binary search trees and is typically implemented using
that data structure, as well as a container unordered_map that is a class of
hash tables.

If the number of entries is not too large, the phone book program would
probably perform well under any of these three options. If the number of entries
was very large, balanced binary search trees or hash tables would be preferable.
In C++, the most convenient option is to use an STL map.

1At Clarkson, these data structures are covered in detail in the course CS344 Algorithms and
Data Structures.

8.2. MAPS IN THE STL 213

In this chapter, we will learn how to use STL maps. We will then create a
version of the phone book program that uses maps.

Note that there are some circumstances where a sorted vector is preferable
to a map. One would be if memory space was very tight. This is because even
though a balanced binary search tree with n elements uses Θ(n)memory, it uses
more memory than the optimal amount of a sorted vector of just the right size.

Another circumstance would be if elements were indexed by consecutive in-
tegers. In the phone book program, entries are indexed by name, that is, the
name of an entry is what is used to access it. But imagine a program that runs
a time-intensive algorithm on a graph (such as a network) and needs quick ac-
cess to information about the nodes in that graph. If the nodes are numbered
1 through n, then the nodes can be stored in a vector and accessed in constant
time. With a map, access would take logarithmic time. If the number of nodes
is large, the difference can be significant.

In general, however, with indexed data, maps are usually the best choice.
Situations where sorted vectors are preferable are fairly specialized and not that
common.

8.2 Maps in the STL

As mentioned in the previous section, the STL includes a container called map

that guarantees the performance of balanced binary search trees and is typically
implemented by using that data structure. A map stores a collection of elements
that each have a key. Map elements are indexed using those keys, which means
that the elements are normally accessed by using those keys. For example, in
the phone book program, the names would be used as keys to access the phone
book entries.

Keys are similar to array or vector indices and in that sense, maps are some-

214 CHAPTER 8. MAPS

what similar to arrays and vectors. But a critical difference is that map keys do
not have to be integers.

The name map comes from the fact that each map associates a unique el-
ement to each key, just as a mathematical map or function would. Maps are
sometimes also called dictionaries (with the keys viewed as words and the ele-
ments as definitions) or tables (with two columns, one for the keys, the other for
the elements).

In principle, map keys could be any type of value. But STL maps require
that keys support the < operator. This makes it possible for STL maps to be
implemented as balanced binary search trees.

Maps are generic because both keys and elements can be of a variety of types.
Therefore, when declaring a map, two types must be specified: one for the keys
and another for the elements. For example, map<string, int> is a type of
map in which keys are strings and elements are integers. In other words, maps
of integers indexed by strings.

Map elements can be accessed by using the usual indexing operator. For
example, m[k] returns a reference to the element whose key is k. The indexing
operator can be also be used to add elements to a map: if no element with the
given key is present in the map, then the indexing operator will automatically
create one. That element will be the default object of class T, or a random value
in case T is not a class. Usually, this default element is immediately replaced by
a copy of some other element as in m[key] = e.

Tables 8.2 to 8.4 show some additional map operations. (The methods
begin, end and their usual variations are not included.) The running times
of the operations are indicated as functions of n, the number of elements in the
map. These running times assume that keys of type K and elements of type T
can be copied and compared in constant time.

Map iterators are bidirectional iterators. But a key difference between map

8.2. MAPS IN THE STL 215

map<K,T> m
map<K,T> m(m2)

Creates a map m that can hold elements of type T with keys of type K.
The map is initialized to be empty, or to be a copy of map m2. Θ(1)
for the default constructor. Θ(n) for the copy constructor, where n is
the size of m2.

m.size()
Asks map m for the number of elements it currently contains. Θ(1).

m.empty()
Asks map m if it is empty. Θ(1).

m[k]
Asks map m for a reference to the element with key k. If no such
element exists, one is created. Θ(log n).

m.find(k)
Asks map m for an iterator to the pair with key k. If no such pair exists,
the end iterator is returned. Θ(log n).

m.count(k)
Asks map m for the number of elements it contains that have key k.
Either 0 or 1 is returned. Θ(log n).

m1 = m2
Makes map m1 a copy of map m2. Returns a reference to ls1. Θ(n),
where n is the total size of m1 and m2.

m1.swap(m2)
Asks map m1 to swap contents with map m2. Θ(1).

Table 8.2: Some map operations (part 1 of 3)

216 CHAPTER 8. MAPS

m.erase(k)
Asks map m to delete the element with key k, if one exists. Returns 1
if an element was deleted; 0, otherwise. Θ(log n).

m.erase(itr)
Asks map m to delete the pair that itr points to. An iterator that
points to the next pair is returned. Amortized Θ(1).

m.erase(start, stop)
Asks map m to delete all elements in the range [start,stop). An
iterator that points to the next pair is returned. Θ(log n+ r), where r
is the number of elements removed.

m.clear()
Asks map m to delete all its elements. Θ(n).

Table 8.3: Some map operations (part 2 of 3)

8.2. MAPS IN THE STL 217

m.insert(p)
Asks map m to insert a copy of pair p, which consists of a key and
an element. No insertion occurs if the map already contains a pair
with p’s key. Returns a pair consisting of an iterator and a Boolean
value. If the insertion is successful, the Boolean value is true and
the iterator points to the new pair. If the insertion fails, the Boolean
value is false and the iterator points to the pair that prevented the
insertion. Θ(log n).

m.insert(itr, p)
Asks map m to insert a copy of pair p, which consists of a key and an el-
ement. No insertion occurs if the map already contains a pair with p’s
key. Returns an iterator that points to the new pair or to the pair that
prevented the insertion. The iterator itr is an indication of where
the new pair may belong. Amortized Θ(1) if the new pair is inserted
right before the position indicated by itr. Otherwise, Θ(log n).

Table 8.4: Some map operations (part 3 of 3)

218 CHAPTER 8. MAPS

and list iterators is that map iterators point to a pair (key, element). Each map
pair is an object of class pair<const K, T>. The class pair is a standard
STL class. In general, each object of class pair<First, Second> combines
two values, one of type First, the other of type Second. Each pair has two
public data members first and second that hold the two components of the
pair. In a map, first is the key and second is the element.

When using iterators to traverse a map, the pairs are encountered in increas-
ing order of key. This goes with the fact that maps are usually implemented as
balanced binary search trees. But it’s also convenient. In particular, it means
that STL maps can be viewed (and used) as sequences of elements ordered by
key.

The second insert and second erase operations run in amortized con-
stant time. Recall that this means that over the long run, the running time per
operation will average to a constant.

The map container is defined in library file map and included in the std

namespace. The pair class is defined in library file utility, which is always
included in map. STL maps include several additional operations that are de-
scribed in a reference such as [CPP].

Study Questions

8.2.1. What is a map?

8.2.2. How many types need to be specified when creating a map? What do
they represent?

8.2.3. What happens when the indexing operator is used with a key that is not
present in a map?

8.2.4. What type of value do map iterators point to?

8.2. MAPS IN THE STL 219

Exercises

8.2.5. Experiment with maps by writing a test driver that creates more than one
type of map and uses all the methods shown in Tables 8.2 and 8.3.

8.2.6. Suppose that a file contains the names and ages of various people. Each
name is given on a line by itself. The following line contains the age of the
person. Write code fragments that perform the following:

a) Read the file and store all the ages of the people in a map indexed by
name.

b) Print the contents of the map with one line per person in the following
format:

Joe Smith: 45

c) Print the names of all the people who are younger than 21.

8.2.7. Suppose that a file contains the numbers and prices of various products.
Each product number is given on a line by itself. The following line con-
tains the price of the product. Write code fragments that perform each of
the following:

a) Read the file and store all the prices of the products in a map indexed
by product number.

b) Print all the products in the map that cost less than $1.

c) Create another map that contains all the products that cost less than
$1.

220 CHAPTER 8. MAPS

8.3 Design and Implementation of the Phone Book

The first section of this chapter described the behavior of the phone book pro-
gram and addressed some of its design. We now finish the design and imple-
mentation of the program.

As decided earlier, the program will have a class of phone book entries that
each holds a name and a phone number. These objects are responsible for their
own reading and printing (just like Time and string objects).

The implementation of this class is shown in Figure 8.3. Note that we are
not hiding the data members of the class (by making them private). There is
little advantage to hiding these data members since it is unlikely that the way in
which these strings are stored will change.

The rest of the phone book program can be designed in a way similar to the
text editor of the previous chapter. The storage of the phone book entries and
the execution of the phone book commands on those entries will be handled by a
PhoneBookList component. The overall control of the phone book program,
and most of the user interaction, will be handled by a PhoneBook component.

Figure 8.4 shows the declaration of the PhoneBook class. This
class has a public method run as well as two private helper methods,
display_entry_and_menu and execute. Figures 8.5 to 8.7 show the im-
plementations of run and execute.

Figure 8.8 shows the declaration of the PhoneBookList class. The iterator
itr_current_entry marks the location of the current line.

Figures 8.9 and 8.10 show the implementation of most of the
PhoneBookList methods. The add method uses the map insert method,
which conveniently returns an iterator to the new entry, or to an existing entry
that already has the given name. Note how, in the arguments of insert, we
don’t have to explicitly construct first a PhoneBookEntry and then a pair of

8.3. DESIGN AND IMPLEMENTATION OF THE PHONE BOOK 221

class PhoneBookEntry
{
public:

PhoneBookEntry() :
name("no name"), number("no number") {}

PhoneBookEntry(const std::string & name0,
const std::string & number0) :

name(name0), number(number0) {}

std::string name;
std::string number;

};

inline std::istream & operator>>(std::istream & in,
PhoneBookEntry & e)

{
getline(in, e.name);
getline(in, e.number);
return in;

}

inline std::ostream & operator<<(
std::ostream & out, const PhoneBookEntry & e)

{
out << e.name << std::endl << e.number

<< std::endl;
return out;

}

Figure 8.3: The declaration and implementation of PhoneBookEntry

222 CHAPTER 8. MAPS

class PhoneBook
{
public:

void run();

private:
void display_entry_and_menu() const;
void execute(char command, bool & done);

PhoneBookList entry_list;
};

Figure 8.4: The declaration of the PhoneBook class

void PhoneBook::run()
{

entry_list.read_file(kcsFileName);
bool done = false;
do {

display_entry_and_menu();
cout << "choice: ";
char command;
cin >> command;
cin.get(); // new line char
execute(command, done);
cout << endl;

} while (!done);
}

Figure 8.5: The run method

8.3. DESIGN AND IMPLEMENTATION OF THE PHONE BOOK 223

void PhoneBook::execute(char command, bool & done)
{

switch (command) {
case ’n’: {

entry_list.move_to_next();
break;

}
case ’e’: {

if (entry_list.empty()) return;
cout << "new number: ";
string new_number;
getline(cin, new_number);
entry_list.edit_current(new_number);
break;

}
case ’s’: {

cout << "name: ";
string name;
getline(cin, name);
entry_list.find(name);
break;

}
...

};
}

Figure 8.6: The execute method (part 1 of 2)

224 CHAPTER 8. MAPS

void PhoneBook::execute(char command, bool & done)
{

switch (command) {
...
case ’a’: {

cout << "new name: ";
string new_name;
getline(cin, new_name);
cout << "phone number: ";
string new_number;
getline(cin, new_number);
entry_list.add(new_name, new_number);
break;

}
case ’q’: {

entry_list.write_file(kcsFileName);
done = true;
break;

}
};

}

Figure 8.7: The execute method (part 2 of 2)

8.3. DESIGN AND IMPLEMENTATION OF THE PHONE BOOK 225

class PhoneBookList
{
public:

PhoneBookList() :
itr_current_entry(m_entries.end()) {}

void add(const std::string & name,
const std::string & number);

void display_current_entry() const;
void move_to_next();
void edit_current(const std::string & new_number);
void find(const std::string & name);
bool empty() const { return m_entries.empty(); }
void read_file(const std::string & file_name);
void write_file(const std::string & file_name)

const;

private:
std::map<std::string, PhoneBookEntry> m_entries;
std::map<std::string, PhoneBookEntry>::iterator

itr_current_entry;
};

Figure 8.8: Declaration of PhoneBookList

226 CHAPTER 8. MAPS

the right type:

m_entries.insert(
std::pair<std::string, PhoneBookEntry>(

name, PhoneBookEntry(name, number)));

These objects are constructed automatically from the initializer lists provided as
arguments to insert:2

m_entries.insert({name, {name, number}});

Figure 8.11 shows the implementation of the read_file method. After
opening the file and reading the number of entries, each entry is read and added
to the map by using the version of insert that takes an iterator as argument.

It would have been slightly simpler to add each new entry to the map by
using the indexing operator:

m_entries[new_entry.name] = new_entry;

But this would not have been as efficient. Here’s why. Suppose that n is the total
number of entries in the file. Once the map is half full, each indexing operation
will take time at least Θ(log(n/2)) = Θ(log n− 1), which is Θ(log n). This leads
to a total reading time that’s at least Θ(n log n). (The running time is also at
most Θ(n log n) because each indexing operation takes time at most Θ(log n).)

In contrast, if we make sure that the entries in the file are always sorted in
increasing order by name then, as we read the entries from the file, we know
where each new entry needs to be inserted: at the end of the map. By using the
insert method with an end iterator, each entry is added in amortized constant
time, for a total reading time of Θ(n).

2The ability to construct objects automatically from initializer lists is new to C++11.

8.3. DESIGN AND IMPLEMENTATION OF THE PHONE BOOK 227

inline void PhoneBookList::add(
const std::string & name,
const std::string & number)

{
auto result =

m_entries.insert({name, {name, number}});
itr_current_entry = result.first;

}

inline void PhoneBookList::display_current_entry()
const

{
if (m_entries.empty()) return;
std::cout << itr_current_entry−>second;

}

inline void PhoneBookList::move_to_next()
{

if (m_entries.empty()) return;
++itr_current_entry;
if (itr_current_entry == m_entries.end()) {

itr_current_entry = m_entries.begin();
}

}

Figure 8.9: Some of the PhoneBookList methods (part 1 of 2)

228 CHAPTER 8. MAPS

inline void PhoneBookList::edit_current(
const std::string & new_number)

{
itr_current_entry−>second.number = new_number;

}

inline void PhoneBookList::find(
const std::string & name)

{
auto itr = m_entries.find(name);
if (itr != m_entries.end())

itr_current_entry = itr;
}

Figure 8.10: Some of the PhoneBookList methods (part 2 of 2)

The source code and documentation of the phone book program are available
on the course web site under PhoneBook1.0. Note that the implementation of
the program is not complete; one of the exercises asks you to add what’s missing.

Exercises

8.3.1. Modify the search command of the phone book program as follows: in
case an entry is not found, the program should display the entry that would
normally follow the one that was searched for. For example, in a phone
book with Alice and Charlie, searching for Bob would show Charlie. Hint:
Use the lower_bound method. See [CPP] for details. Make sure to con-
sider the case when the name searched for is larger than all the names
currently in the phone book.

8.3. DESIGN AND IMPLEMENTATION OF THE PHONE BOOK 229

void PhoneBookList::read_file(
const std::string & file_name)

{
ifstream ifs(file_name);
if (!ifs) return;

// no file; one will be created when
// write_file is called

int num_entries;
ifs >> num_entries;
ifs.get(); // \n
for (int i = 0; i < num_entries; i++) {

PhoneBookEntry new_entry;
ifs >> new_entry;
m_entries.insert(m_entries.end(),

{new_entry.name, new_entry});
}
itr_current_entry = m_entries.begin();

}

Figure 8.11: The read_file method

230 CHAPTER 8. MAPS

8.3.2. Complete the implementation of the phone book program by writing code
for the following commands.

a) previous.

b) quit. (All that is left to do is to implement the helper method
write_file.)

c) delete.

Chapter 9

Object-Oriented Design

We have already created four programs in these notes: a pay calculator, a file
viewer, a text editor and a phone book. These programs allowed us to learn a
number of important concepts and techniques. In particular, we learned about
data abstraction, classes, vectors, linked lists and maps. In this chapter, we will
step back and discuss the software development process in more detail.

9.1 The Software Life Cycle

As we saw when we created the pay calculator, text editor and phone book pro-
grams earlier in these notes, each new piece of software needs to be specified,
designed and implemented.

Software specification involves determining exactly what the software must
do. A specification is normally concerned only with the behavior of the software
as seen from the outside. In other words, a specification spells out what the
software must do, not how it does it. As mentioned in Chapter 1, a good speci-
fication should be clear, correct and complete. It also helps if it is as concise as

231

232 CHAPTER 9. OBJECT-ORIENTED DESIGN

possible. Specifying software typically involves communicating with the client.
Software design generally consists of the following three tasks:

1. Identify the various components of the software and the tasks they are
responsible for.

2. Choose or design major algorithms and data structures for these compo-
nents.

3. Write precise specifications for these components, including precise inter-
faces.

The interface of a component is what the user code (or client code) uses to
communicate with the component. In the case of a function, this consists of the
name of the function as well as the type of its arguments and its return value.
In the case of a class, this consists of the name of the class and the interface of
all of its public methods and data members.

In other words, after the software is designed, we should know what com-
ponents it contains, what these components do and how to use them.

Software implementation is the writing and testing of the code. This nor-
mally involves the following:

1. Code each software component.

2. Test each component on its own. As we saw in Chapter 1, this is called
unit testing.

3. Combine the components gradually, one at a time, testing after each addi-
tion. This is called integration testing.

9.2. THE SOFTWARE DEVELOPMENT PROCESS 233

Unit and integration testing make it easier to locate and fix errors. This is
especially important when dealing with large programs.

Once a program is implemented, it is ready to be used. But the software
will usually continue to evolve. This can consist of fixing errors (as reported
by users, for example), adapting the software to new environments (such as
new hardware), extending the software (to give it new capabilities), or more
generally improving the software (to make it more efficient or easier to use, for
example). All of these activities constitute what is called software maintenance
and evolution, or software maintenance, for short.

Software specification, design, implementation and maintenance are often
referred to as the four stages of the software life cycle. We will say a bit more
about the first three stages later in this chapter. But first, in the next section, we
discuss a key issue in the management of the software development process.

Study Questions

9.1.1. What are the four stages of software development?

9.1.2. What is the interface of a software component?

9.1.3. What is integration testing?

9.1.4. What is the main advantage of integration testing (over testing all the
components together right away)?

9.2 The Software Development Process

By the time we are done creating a program, we will have necessarily speci-
fied, designed and implemented it. A key question is how to synchronize these

234 CHAPTER 9. OBJECT-ORIENTED DESIGN

activities. A number of approaches are possible.

One is to simply do everything all at once. Essentially, start coding right away,
and specify and design the program as you code. This may work reasonably well
for small programs but this approach is problematic with large programs. For
example, it makes it difficult to split the work among several programmers: how
can one programmer implement a component and another one simultaneously
write code that uses that component unless the two programmers first agree on
what the component does and how it should be used (specification, including
interface)?

An approach that addresses these problems is to carry out the specification,
design and implementation of a program in sequence. This is usually referred
to as the waterfall model of software development. The idea is that the prod-
uct of each stage flows as input into the next stage: a specification flows from
the specification stage into the design stage, a design document flows from the
design stage into the implementation stage, and code flows the implementation
stage into the maintenance stage.

This approach may seem ideal because each stage of the development of the
software relies on complete information from the previous stage. However, it is
difficult to specify and design a very large program without writing any code to
experiment with the software and verify that the specification and design make
sense.

An alternative to the waterfall model is to proceed incrementally by speci-
fying, designing and implementing successively more complete versions of the
software. This is the approach we took, for example, with the pay calculator:
we built a first version that performed no error-checking.

The main advantage of incremental (or iterative) development is that
knowledge and experience gained in developing one version of the software can
be used in developing the next one. For example, it is possible to get feedback

9.2. THE SOFTWARE DEVELOPMENT PROCESS 235

from the client on early versions. Another advantage is that the creation of the
entire software proceeds as a sequence of smaller, more manageable projects.
And finishing a version of the software, even an incomplete one, is a satisfying
experience that typically generates excitement and increased motivation.

Note that the specification and design of a particular version of the program
does not need to be completely done before its implementation. Details that
concern only one component, such as I/O format, can be left to the developer of
that component. In other words, incremental development does not have to be
a series of smaller waterfall development projects. A fair amount of flexibility is
possible in the development of each version.

There is a lot of evidence that incremental development is superior to the
single-pass waterfall model. For example, Larman and Basili [LB03] surveyed
the history of incremental development and concluded that incremental de-
velopment concepts “have been and are recommended practice by prominent
software-engineering thought leaders of each decade, associated with many suc-
cessful large projects, and recommended by standards boards.”

In addition, Fred Brooks, an early leader in the field of software engineer-
ing,1 described the essential challenges of software engineering and identified
incremental development as one of three promising solutions [Bro87]. He points
out that software developers used to think of writing programs (as if they were
recipes) but that as program size increased, software developers realized it was
more appropriate to think of building programs. Similarly, Brooks suggested
that instead of building programs, we now think of growing them (by using in-
cremental approaches).

Note that incremental development is a key ingredient in all the agile ap-
proaches to software development.

1Brooks was also the 1999 winner of the ACM’s Turing Award, which is widely regarded as
the “Nobel Prize” of computer science [TA].

236 CHAPTER 9. OBJECT-ORIENTED DESIGN

Much more can be said about the software development process. At Clark-
son, this is done in a course such as CS350 Software Design and Development.

Study Questions

9.2.1. What is a disadvantage of coding right away without first specifying and
designing the software?

9.2.2. What is the waterfall model of software development?

9.2.3. What is incremental software development?

9.2.4. What are the benefits of incremental development?

9.3 Specification, Design and Implementation

In this section, we say a bit more about the specification, design and implemen-
tation of a program.

One strategy for producing a program specification is to pretend that the
program is running and then imagine using it in every possible way. This is
sometimes called working through scenarios. This allows us to explore and spec-
ify every detail of the program’s behavior.

Recall that our goal is to design a modular program. There are three strate-
gies that help us achieve this goal. First, of course, we use abstraction, both
procedural and data abstraction. Second, as we design the program, we make
sure that components delegate as many tasks as possible to other components.
Third, we aim for a design in which each component has its own secret. This typ-
ically leads to important aspects of the program being isolated from each other
within different components.

9.3. SPECIFICATION, DESIGN AND IMPLEMENTATION 237

Just like the specification of the program, the design can be carried out by
working through scenarios. The design then proceeds mainly as a sequence of
what/who questions: What needs to be done? Who is going to do it? This is
sometimes referred to as the what-who cycle. This design process is said to be
responsibility-driven because it is driven by the identification and assignment of
responsibilities.

Note that while designing a program, it is a good idea to delay deciding on
minor details, especially those that involve only one component. Early on, we
want to focus on the major aspects of the program without getting distracted
(and possibly overwhelmed) by all the little details.

Brooks argues that one of the essential difficulties of software development is
that software is “invisible and unvisualizable” [Bro87]. To address this difficulty,
it is useful to create diagrams that help us “see” our programs.

Figure 9.1 shows the components of the phone book program we created
in the previous chapter. Recall from earlier in these notes that in a component
diagram, each component is represented by a box and an arrow from one com-
ponent to another means that the first component uses the second one. The main
methods and data members of each component are indicated. A horizontal line
separates the public members from the private ones.

Components diagrams are useful but they’re static: they show what the com-
ponents are but they don’t show them in action. In contrast, Figure 9.2 shows
an interaction diagram. In an interaction diagram, each type of component is
represented by a vertical line and a labeled arrow represents a message being
sent from an object of one class to an object of another class. Unlabeled arrows
represent control returning to the first object. A component diagram is like a
photograph of the program; an interaction diagram is more like a video.

In the diagram of Figure 9.2, we have chosen to include the map component
held by the PhoneBookList.

238 CHAPTER 9. OBJECT-ORIENTED DESIGN

public:
run

private:
entry_list

public:
add
display_current_entry
move_to_next
edit_current
find
empty
read_file
write_file

private:
m_entries
itr_current_entry

public:
name
number

PhoneBook

PhoneBookList

PhoneBookEntry

Figure 9.1: A high-level component diagram

9.3. SPECIFICATION, DESIGN AND IMPLEMENTATION 239

PhoneBook PhoneBookList map PhoneBookEntry
| | | |

(create) | | | |
------------>| | | |

(create)		
---------->		
	(create)	
	---------->	
	<----------	
<----------		

<------------| | | |
run | | | |

------------>| | | |
read_file		
---------->		
	(create)	
	--------------------->	
	<---------------------	
	>>	
	--------------------->	
	<---------------------	
	insert	
	---------->	
	<----------	
	...	
<----------		

Figure 9.2: Launch of the phone book program up to the reading of the file

240 CHAPTER 9. OBJECT-ORIENTED DESIGN

This particular interaction diagram illustrates the launching of the program
up to the reading of the file. A single interaction diagram can describe the entire
execution of only a very small program. For larger programs, such as our phone
book program, multiple diagrams are needed to describe all the possible scenar-
ios. For example, Figure 9.3 illustrates the following scenario: the user searches
for a an entry and then edits it. That interaction diagram does not show the
details of the displaying of the current entry. Those are shown in Figure 9.4.

As we said earlier, after coding, each component should be tested on its own
before it is integrated into the rest of the program. But if a component uses
other components, then it cannot be tested in complete isolation. One option is
to wait until the other components have been implemented. In a single-person
project, this may work well. But in a multi-person project, we’d like to have all
the developers coding and unit testing their components at the same time.

So another option is to create stubs for the other components. A stub is a
dummy version of a component: it has the same interface but performs none or
only a very small part of the intended responsibilities of the component. For
example, in the phone book program, we could test the PhoneBook class,
which is mainly responsible for interacting with the user, by using a dummy
PhoneBookList class that does nothing except always display the same fake
entry. (This requires the creation of stubs for each of the PhoneBookList

methods.) Testing PhoneBook with a dummy PhoneBookList would al-
low us to verify that PhoneBook performs the user interaction properly. Of
course, this doesn’t tell us if PhoneBook will work properly with the real
PhoneBookList. This is to be determined at integration testing, after
PhoneBookList has been implemented (and tested on its own).

9.3. SPECIFICATION, DESIGN AND IMPLEMENTATION 241

PhoneBook PhoneBookList map PhoneBookEntry
find		
---------->		
	find	
	---------->	
	<----------	
	end	
	---------->	
	<----------	
<----------		

display_current | |
---------->		
<----------		
edit_current		
---------->		
	number	
	--------------------->	
	<---------------------	
<----------		

display_current | |
---------->		
<----------		

Figure 9.3: The user searches for a an entry and then edits it

242 CHAPTER 9. OBJECT-ORIENTED DESIGN

PhoneBookList map PhoneBookEntry
| | |

display_current | |
---------->| | |

empty	
---------->	
<----------	
<<	
--------------------->	
<---------------------	

<----------| | |
| | |

Figure 9.4: The displaying of the current entry

Study Questions

9.3.1. What does working through scenarios mean?

9.3.2. Why should we aim for a design in which each component has its own
secret?

9.3.3. What is the what-who cycle?

9.3.4. What is responsibility-driven design?

9.3.5. What are two benefits of including in the design of the phone book pro-
gram a component for individual entries?

9.3.6. What is a component diagram?

9.3.7. What is an interaction diagram?

9.3. SPECIFICATION, DESIGN AND IMPLEMENTATION 243

9.3.8. What is a stub or dummy component?

244 CHAPTER 9. OBJECT-ORIENTED DESIGN

Chapter 10

Dynamically Allocated Arrays

Ordinary C++ arrays have a number of weaknesses, including the fact that their
size must be fixed and determined at compile time. In this chapter, we will learn
to address this problem through dynamic memory allocation. In the process, we
will also introduce the concept of a pointer. These concepts will play a key role
in the implementation of vectors in the next chapter.

10.1 The Size of Ordinary Arrays

Before learning how to create arrays whose size is determined at run time, it
is useful to first understand why the size of an ordinary C++ array must be a
constant that’s determined at compile time. This requires taking a brief look at
the management of data during the execution of a program.

During the execution of a program, when a function is called, memory space
is automatically allocated for all the local variables of the function. The values
of these variables are normally stored in a block of memory called an activation
record. In an activation record, the values of the variables are usually stored side-

245

246 CHAPTER 10. DYNAMICALLY ALLOCATED ARRAYS

by-side. Without getting into all the details, the advantage of this setup is that
it allows the values of the variables to be accessed very efficiently at run time.1

But to gain full advantage of this setup, the compiler must know the size
of each variable. This means that variable sizes must be determined before the
program is compiled. In addition, these sizes cannot change since each variable
is stored in a fixed amount of space somewhere in an activation record. These
restrictions apply to all the local variables of a function, including arrays.

These restrictions also applies to the data members of a class or structure.
For example, when an object is created, a block of memory is allocated to store
the values of the data members of the object. In this block of memory, the data
members are stored side-by-side, just like the local variables of a function are
stored side-by-side in an activation record. Once again, this setup allows the
values of the data members to be accessed very efficiently but it requires that
each data member have a fixed size that’s determined at compile time.

Therefore, if an array is going to have a size that’s determined at run time,
the array will have to be stored somewhere else, not in the activation record of
a function (and not inside an object). We will learn how to do that in the next
section. The price we will have to pay is that accessing the elements of these
arrays will take slightly more time.

Study Questions

10.1.1. What is the advantage of storing variables side-by-side in an activation
record? What is the disadvantage?

1At Clarkson, courses such as CS241 Computer Organization and CS445 Compiler Construction
normally cover this subject in more detail.

10.2. THE DYNAMIC ALLOCATION OF ARRAYS 247

10.2 The Dynamic Allocation of Arrays

In previous section, we learned that for an array to have a size that’s determined
at run time, the array must be stored outside the activation record of a function,
and outside of any object. This can be done by using the new operator as in

new int[n]

In this example, the new operator allocates, or reserves, a block of memory
large enough to store an array of n integers.

That block of memory doesn’t have a name, like an ordinary array. So how do
we access it? Each location in a computer’s memory has an address that uniquely
identifies it and can be used to access it. The new operator returns the address
of the allocated block of memory. This address can be stored in a special variable
called a pointer as in

int ∗ da = new int[n];

The ∗ indicates that da is a pointer to an integer, not an actual integer. And the
type of the pointer must match the type of the array. For example,

string ∗ da = new string[n];

creates an array of n strings and set da to point to it.
Note that da is declared as a pointer to a single value (of type int or

string, in the above examples). When allocating an array, new returns a
pointer to the first element of the array. That pointer can then be used to access
all the elements of the array by using the usual indexing operator as in da[i].
For example, Figure 10.1 shows the creation, initialization and printing of an
array. Note how the size of the array is determined at run time by the user of
the code.

248 CHAPTER 10. DYNAMICALLY ALLOCATED ARRAYS

int n;
cin >> n;

int ∗ da = new int[n];

for (int i = 0; i < n; ++i) da[i] = i∗10;

for (int i = 0; i < n; ++i) cout << da[i] << ’ ’;

Figure 10.1: Creating and accessing a dynamically allocated array

The local variables of a function are automatically allocated when the func-
tion is called. Similarly, the data members of an object are automatically allo-
cated when the object is created. This is called automatic memory allocation
and these variables are called automatic variables.

In contrast, variables created by the new operator are said to be dynamically
allocated and they are called dynamic variables. As we mentioned before,
dynamic variables do not have names, they only have addresses.

In this section, we used da as a generic name for a dynamically allocated
array. We will also use da as a variable name prefix to indicate that the variable
points to a dynamically allocated array. In contrast, for ordinary arrays, we will
use the prefix a.

Study Questions

10.2.1. What does the new operator do?

10.2.2. When allocating an array, what value does the new operator return?

10.2.3. What is an automatic variable?

10.3. PROGRAMMING WITH DYNAMICALLY ALLOCATED ARRAYS 249

// n is the current size of da
int ∗ da_new = new int[2∗n];
for (int i = 0; i < n; ++i) da_new[i] = da[i];

delete [] da;
da = da_new;
da_new = nullptr;

Figure 10.2: Resizing a dynamically allocated array

10.2.4. What is a dynamic variable?

10.2.5. What is the main advantage of dynamically allocated arrays?

10.3 Programming with Dynamically Allocated Ar-
rays

In this section, we look at several important issues that come up when program-
ming with dynamically allocated arrays. These include the resizing, copying
and deallocation of dynamically allocated arrays, the value nullptr and the
passing of dynamically allocated arrays as arguments to functions.

We now know how to dynamically allocate arrays so their size can be deter-
mined at run time. But can that size change? Strictly speaking, no. However, a
pointer to a dynamically allocated array can be made to point to another dynam-
ically allocated array. This allows us to indirectly resize a dynamically allocated
array as illustrated in Figure 10.2.

This code starts by allocating an array da_new that’s double the size of the
array da. (Note how we are using the name of the pointers as the names of the

250 CHAPTER 10. DYNAMICALLY ALLOCATED ARRAYS

arrays too, even though, strictly speaking, the arrays have no name.) Then, the
elements of da are copied to da_new.

Note that da_new = da would not work. This would only copy the pointer
da, not the array that da points to. That is, it would make da_new point to
the array that da points to. It would not copy the elements of the array that da
points to into the larger array that da_new points to.

Once the elements are copied, the old array is deallocated so that the memory
space that it uses can be later used to store other dynamic variables. This is done
with the delete operator. The square brackets specify that an entire array is
to be deallocated, not just the one integer that da points to. If we neglected to
deallocate the old array, the memory space would continue to be reserved for the
array even though we would no longer have any way of accessing that memory
space. This would reduce the amount of memory available to the program and
would be called a memory leak.

After the old array is deallocated, da is set to point to the new array. Finally,
da_new is set to the special pointer value nullptr, which is essentially a way
of making da_new point to nothing.2 This is done as a precaution so that daNew
is not used later to accidentally modify or deallocate the array.

In the code of Figure 10.2, we copied the elements of da to da_new by
writing our own loop. Could we have used the STL generic algorithm copy

instead? This would require iterators and it turns out that pointers to array
elements meet the requirements of random-access iterators: they support all
the operations listed in Tables 6.1 and 6.2.

For example, pointers can be used to display the contents of array da as
follows:

2The value nullptr is new to C++11. Before C++11, the value NULL was used instead.
NULL can still be used but it is safer to use nullptr because nullptr is a pointer value while
NULL is an integer and this can cause problems in some situations. The NULL value is defined
in the standard libraries cstddef and cstdlib.

10.3. PROGRAMMING WITH DYNAMICALLY ALLOCATED ARRAYS 251

for (const int ∗ p = da; p != da + n; ++p)
cout << ∗p << ’ ’;

In this loop, p is initialized to point to the first element of the array. At every
iteration, p is dereferenced to access the element it points to and then p is in-
cremented to make it point to the next element. The loop terminates when p

equals da + n, which is a pointer that points just past the last element of the
array.

And now that we have array iterators, we can use the STL algorithms on
arrays. For example, the contents of da can be copied to da_new as follows:

std::copy(da, da + n, da_new);

The passing of dynamically allocated arrays as arguments to functions raises
a few particular issues. Figure 10.3 shows two functions init and print that
initialize and print the contents of an array. The array is passed to the functions
by simply passing a pointer to its first element.

The array argument could have also been declared as int a[]. This is
equivalent to int ∗ a. Note also that the argument a of print is declared
as pointing to a constant integer. This prevents the function from modifying the
contents of the array.

Note that the functions init and print can be used on ordinary arrays as
well as on dynamically allocated arrays, as in

int a[5];
init(a, 5);
print(a, 5);

(This is the reason why we called the argument of these functions a instead
of da.) This works because an ordinary array is automatically converted to a
pointer to its first element whenever needed.

252 CHAPTER 10. DYNAMICALLY ALLOCATED ARRAYS

void init(int ∗ a, int n)
// Initializes array a of size n to contain 0, 1,
// 2, ..., (n−1).
{

for (int i = 0; i < n; ++i) a[i] = i;
}

void print_one_int(int x) { cout << x << ’ ’; }

void print(const int ∗ a, int n)
// Prints the elements of array a of size n, on one
// line, separated by a single space.
{

std::for_each(a, a + n, print_one_int);
cout << ’\n’;

}

Figure 10.3: Functions that initialize and print an array

10.3. PROGRAMMING WITH DYNAMICALLY ALLOCATED ARRAYS 253

Here is another example of this kind of conversion:

int ∗ b = a;

This makes the pointer b point to array a (that is, to the first element of array
a). Then b can be used to access the array, just as if it was the name of the array.
For example,

std::fill(b, b+5, 0);
b[0] = 1;
print(b, 5);

fills the array with 0’s, sets its first element to 1 and then prints the contents of
the array.

Figure 10.4 shows a function that resizes a dynamically allocated array. The
argument da is a pointer passed by reference. This allows the function to change
not just the contents of the array that da points to but also the pointer itself (so
it can be made to point to the new array). Note how the function takes care not
to go out of bounds in either array by using the minimum of the old and the new
sizes.

The functions init, print and resize can obviously be made generic,
as shown in Figures 10.5 and 10.6. Note how requirements on the element
type T are clearly documented. Note also how the template argument must
be specified when passing the function print_one to the generic algorithm
for_each. Otherwise, the compiler would not know how to instantiate the
function template when compiling the call to for_each.

So we now know how to create arrays whose size is determined at run time.
These array can also be resized as needed. You may now wonder why it is that
C++ arrays are not all dynamically allocated (as in some other languages). The
reason comes from our discussion of data management earlier in this chapter.

254 CHAPTER 10. DYNAMICALLY ALLOCATED ARRAYS

void resize(int ∗ & da, int old_size, int new_size)
// Changes the size of dynamically allocated array da.
{

int ∗ da_new = new int[new_size];
int min_size = std::min(old_size, new_size);
std::copy(da, da + min_size, da_new);

delete [] da;
da = da_new;
da_new = nullptr;

}

Figure 10.4: A function that resizes a dynamically allocated array

Accessing an ordinary array only requires finding it in the activation record of
a function, or among the data members of an object. In contrast, accessing a
dynamically allocated array requires first accessing the pointer that points to
the array and then using that pointer to access the array. The pointer retrieval is
an extra step that requires extra time. Therefore, ordinary arrays typically lead
to faster code. The gains are usually small but they can be important in certain
applications.

We end this section by reviewing all the operations we have learned that
apply to pointers or are related to the dynamic allocation of arrays. These oper-
ations are listed in Table 10.1. Also described in that table are several ways of
initializing dynamically allocated arrays.

Study Questions

10.3.1. What is the main disadvantage of dynamically allocated arrays?

10.3. PROGRAMMING WITH DYNAMICALLY ALLOCATED ARRAYS 255

template <class T>
void init(T ∗ a, int n)
// Initializes array a of size n to contain 0, 1,
// 2, ..., (n−1).
// Assumption on T: the integers 0 to n−1 can be
// assigned to variables of type T.
{

for (int i = 0; i < n; ++i) a[i] = i;
}

template <class T>
void print_one(const T & x) { cout << x << ’ ’; }
// Assumption on T: values of type T can be printed to
// cout by by using the output operator (<<).

template <class T>
void print(const T ∗ a, int n)
// Prints the elements of array a of size n, on one
// line, separated by a single space.
// Assumption on T: values of type T can be printed to
// cout by using the output operator (<<).
{

std::for_each(a, a + n, print_one<T>);
cout << ’\n’;

}

Figure 10.5: Generic array functions (part 1 of 2)

256 CHAPTER 10. DYNAMICALLY ALLOCATED ARRAYS

T ∗ p
Declares a pointer of type T.

p = nullptr
Makes p point to nothing.

p = q
Makes p point to where q points to.

p = new T[n]
p = new T[n]()
p = new T[n]{}
p = new T[n]{elements}

Makes p point to a new dynamically allocated array of type T and
size n. The array elements are default-initialized in the first version,
value-initialized in the second and third versions, and initialized to
the given elements in the fourth version. In case the number of
given elements is less than n, the remaining elements of the array
are value-initialized.

p[i]
Assuming that p points to an array element, returns a reference to the
element i positions to the right of the element that p points to.

delete [] p
Deallocates the array that p points to.

Table 10.1: Some operations related to pointers and the dynamic allocation of
arrays

10.3. PROGRAMMING WITH DYNAMICALLY ALLOCATED ARRAYS 257

template <class T>
void resize(T ∗ & da, int old_size, int new_size)
// Changes the size of dynamically allocated array da.
// Assumption on T: has a default constructor.
{

T ∗ da_new = new T[new_size];
int min_size = std::min(old_size, new_size);
std::copy(da, da + min_size, da_new);

delete [] da;
da = da_new;
da_new = nullptr;

}

Figure 10.6: Generic array functions (part 2 of 2)

10.3.2. How can a dynamically allocated array be resized?

10.3.3. In the function resize shown in Figure 10.4, could the argument da
be declared as int ∗ da?

10.3.4. What is a memory leak?

Exercises

10.3.5. Create a generic function

T ∗ copy(const T ∗ a, int n)

that takes as arguments an array a and its size n and returns a pointer to
a new dynamically allocated array that contains a copy of all the elements
of a.

258 CHAPTER 10. DYNAMICALLY ALLOCATED ARRAYS

10.3.6. Create a generic function

T ∗ concatenate(const T ∗ a, int n,
const T ∗ b, int m)

that takes as arguments two arrays a and b and returns a pointer to a new
dynamically allocated array that contains a copy of all the elements of a
followed by a copy of all the elements of b. The arguments n and m are
the sizes of the arrays a and b, respectively.

10.3.7. Consider the following arrays:

int a[5];
int b[5];
int ∗ c = new int[5];
int ∗ d = new int[5];

What does each of the following statements do?

a) a = b;

b) a = c;

c) c = b;

d) c = d;

Verify your answers by running some tests.

Chapter 11

Implementation of Vectors

In this chapter, we will learn how to implement a basic class of vectors.

11.1 A Basic Class of Vectors

Figure 11.1 shows the declaration of a basic class of vectors. (Additional meth-
ods and operators will be added later in this section and in the following sections.
You will be asked to add others in the exercises.)

The first thing to notice is that Vector is actually a class template. This is
because we want to create a generic class of vectors, that is, vectors that can
store any type of element. That’s what the template argument T represents: the
type of element stored in the vector.

The class Vector has two data members. The first one is a pointer to a
dynamically allocated array that contains the vector elements. It is common to
call such an array a buffer. Recall that buffer_ is actually a pointer to the first
element of that array. The type of this element is, of course, T. The second data
member is the size of the vector, that is, the number of elements it holds.

259

260 CHAPTER 11. IMPLEMENTATION OF VECTORS

template <class T>
class Vector
{
public:

Vector() : buffer_(nullptr), size_(0) {}
explicit Vector(int n);
Vector(const std::initializer_list<T> & init_list);

int size() const { return size_; }

T & operator[](int i) { return buffer_[i]; }
const T & operator[](int i) const
{

return buffer_[i];
}

private:
T ∗ buffer_;

// points to a dynamically allocated array that
// contains the vector elements

int size_;
// the number of elements in the vector (and
// the size of the buffer)

// Returns pointer to new buffer of size n.
// Returns nullptr if n == 0.
T ∗ get_new_buffer(int n) const;

};

Figure 11.1: The class declaration

11.1. A BASIC CLASS OF VECTORS 261

The method size simply returns the size of the vector. The implementation
of the indexing operator is straightforward but note that two versions are pro-
vided. The non-constant version returns a plain reference to the element. This
reference allows the element not only to be retrieved, as in

x = v[4];
cout << v[4];

but also modified, as in

v[4] = 17;
cin >> v[4];

The constant version, on the other hand, returns a constant reference, one that
does not allow the element to be modified.

Note that an alternative would be for the constant version to return a copy
of the element:

T operator[](int i) const { return buffer_[i]; }

But since we don’t know how large elements of type T might be, it is safer to
return a constant reference to avoid unnecessary copying.

The default constructor initializes the vector to be empty. The second con-
structor allows the creation of nonempty vectors. The argument is the initial size
of the vector. The implementation of this constructor is shown in Figure 11.2.
The constructor uses the private method get_new_buffer, whose implemen-
tation is also shown in Figure 11.2. The purpose of get_new_buffer is to
ensure that the buffer is properly initialized to nullptr in case the given size
is 0. (With some compilers, new may not return nullptr when the size is 0.)

262 CHAPTER 11. IMPLEMENTATION OF VECTORS

template <class T>
inline Vector<T>::Vector(int n)
{

buffer_ = get_new_buffer(n);
size_ = n;

}

template <class T>
inline T ∗ Vector<T>::get_new_buffer(int n) const
{

return (n == 0 ? nullptr : new T[n]());
}

Figure 11.2: The second constructor and the get_new_buffer method

Note that it is better for get_new_buffer to be a private method instead
of a public one. In part because that method is of no use to users of vectors. But
also because this method is really part of the implementation of the class and it
is therefore better to hide it from the users.

The second constructor has only one argument. Therefore, the compiler
would normally use that constructor to perform implicit conversions. But the
argument is an integer which implies that a statement such as v = 2 would
cause the compiler to quietly convert the integer 2 into a vector of size 2. In this
case, the conversion doesn’t seem to make much sense. So it is better to declare
the constructor to be explicit. This prevents the constructor from being used
in implicit conversions.

Figure 11.3 shows the implementation of the constructor that takes an ini-
tializer list as argument. This is the constructor that is used in declarations such
as

11.1. A BASIC CLASS OF VECTORS 263

template <class T>
Vector<T>::Vector(

const std::initializer_list<T> & init_list)
{

buffer_ = get_new_buffer(init_list.size());
std::copy(init_list.begin(), init_list.end(),

buffer_);
size_ = init_list.size();

}

Figure 11.3: The initializer-list constructor

Vector<int> v1({10, 20, 30});

and

Vector<int> v1 = {10, 20, 30};

or in implicit conversions such as f({1, 2, 3}), assuming that f takes a
Vector as argument. Recall from Section 6.7 that initializer lists provide very
limited functionality: they only support three methods: size, begin and end.

As explained in Section 2.9, the source code for a class is normally split into
a header file and an implementation file. In the case of Vector, the header
file Vector.h would contain the class declaration while the implementation
file Vector.cpp would contain the implementation of all the methods that
weren’t implemented in the header file. The header file is then included in any
source file that contains code that uses the class (a test driver, for example). The
class and the code that uses the class can then be compiled separately because
all the information the compiler needs about the class to be able to compile the
client code is contained in the header file.

264 CHAPTER 11. IMPLEMENTATION OF VECTORS

But there are exceptions to this basic setup. One concerns inline methods.
When compiling code that uses inline methods, the compiler needs the body of
those methods. As mentioned in Section 2.9, this implies that inline methods
must be implemented in the header file. This is how our class Time was setup
(see Figure 2.22).

Another exception concerns templates. Because Vector is a class template,
its methods are also templates. And the compiler cannot fully compile the im-
plementation of a function template until it sees how the template is going to be
instantiated. This requires knowing how the function is called. Therefore, the
usual setup is to include the implementation of function templates in the header
file, so that this code is available to the compiler when it is compiling code that
uses the function template. In the case of a class template such as Vector, this
means that the entire code of the class, the declaration of the class and the im-
plementation of all the methods, is included in the header file. This is how the
Vector source code available on the course web site is organized.

Source code and a test driver for the version of Vector presented in this
section are available on the course web site under Vector1.0.

Study Questions

11.1.1. Why is get_new_buffer declared private?

11.1.2. Why does a class like Vector need two versions of the indexing oper-
ator?

11.1.3. Why was the second constructor declared explicit?

11.1.4. Why is a template implementation file normally included in the template
header file?

11.2. ITERATORS, INSERT AND ERASE 265

Exercises

11.1.5. Add the following methods, constructors and operators to Vector.
They should behave just like their STL equivalents.

a) empty().

b) back(). (Make sure to include both a constant and a non-constant
version.)

c) Vector(n, e).

d) Equality and inequality testing operators (==, !=).

e) swap(). (Make sure that no elements are copied.)

11.2 Iterators, Insert and Erase

The class of vectors we implemented in the previous section is fairly basic. It
allows us to create vectors whose size is determined at run time but it doesn’t
allow us to change the size of those vectors, either by resizing the vector or
by adding or removing elements from the vector. We will add this ability in
this section. In particular, we will add the methods insert and erase to our
class. (You will be asked to add push_back, pop_back and resize in the
exercises.)

But first, we need to now add iterators to our vectors. A vector iterator should
point to a vector element and support all the operations of random-access iter-
ators. So we can simply use pointers to buffer elements to implement vector
iterators. This works because these pointers point to the vector elements and
also support all the operations of random-access iterators. Figure 11.4 shows
the declaration of the types iterator and const_iterator, as well as the

266 CHAPTER 11. IMPLEMENTATION OF VECTORS

typedef T ∗ iterator;
typedef const T ∗ const_iterator;

iterator begin() { return buffer_; }
const_iterator begin() const { return buffer_; }
const_iterator cbegin() const { return buffer_; }

iterator end() { return buffer_ + size_; }
const_iterator end() const { return buffer_ + size_; }
const_iterator cend() const { return buffer_ + size_; }

Figure 11.4: Iterators

implementation of several begin and end methods. Note how a pointer that
points past the last buffer element is used as the end iterator. The code of Fig-
ure 11.4 should be placed in the public section of the class.

Figure 11.9 shows an implementation of erase. We start by allocating a
new buffer that’s one smaller than the current size of the vector. The vector
elements are then copied to the new buffer. Note how the element to be erased
is skipped.

Figure 11.10 shows an implementation of insert. We start by allocating
a new buffer that’s one larger than the current size of the vector. The vector
elements and the new element are then copied to the new buffer. Note how
new_itr is set to point to the location of the new element in the new buffer.

These implementations of insert and erase are efficient in terms of mem-
ory space because they cause the vector to always have a buffer that’s just large
enough to store the current elements. But these implementations of insert
and erase run in linear time because every time they are executed, every vec-
tor element must be copied to the new buffer. In contrast, the STL specifies that

11.2. ITERATORS, INSERT AND ERASE 267

template <class T>
inline typename Vector<T>::iterator Vector<T>::erase(

Vector<T>::const_iterator const_itr)
{

T ∗ new_buffer = get_new_buffer(size_ − 1);
iterator new_itr =

std::copy(cbegin(), const_itr, new_buffer);
std::copy(const_itr + 1, cend(), new_itr);
delete [] buffer_;
buffer_ = new_buffer;
−−size_;
return new_itr;

}

Figure 11.5: The erase method

insert should run in amortized constant time and that erase should run in
constant time. We will learn how to achieve these running times later in this
chapter.

A version of Vector with the iterators and the implementations of insert
and erase presented in this section is available on the course web site under
Vector1.1.

Exercises

11.2.1. Add the following methods to Vector. They should behave just like
their STL equivalents (except in terms of their running times).

a) push_back(e).

b) pop_back().

268 CHAPTER 11. IMPLEMENTATION OF VECTORS

template <class T>
inline typename Vector<T>::iterator Vector<T>::insert(

Vector<T>::const_iterator const_itr,
const T & e)

{
T ∗ new_buffer = get_new_buffer(size_ + 1);
iterator new_itr =

std::copy(cbegin(), const_itr, new_buffer);
∗new_itr = e;
std::copy(const_itr, cend(), new_itr + 1);
delete [] buffer_;
buffer_ = new_buffer;
++size_;
return new_itr;

}

Figure 11.6: The insert method

11.3. DESTROYING AND COPYING VECTORS 269

c) resize(n).

d) resize(n, e).

11.3 Destroying and Copying Vectors

The current version of Vector has a couple of major flaws that have to do
with the destruction and copying of vectors. We will address these flaws in this
section.

Suppose that a function contains a vector as a local variable. When the func-
tion returns, the Vector object ceases to exist but what happens to the buffer?
Is it deallocated? The answer is no. Which implies that the memory space used
by the buffer will continue to be reserved even though we have no longer any
way of accessing that data. In other words, we will have a memory leak.

To recover that memory, we need to write a special method called a destruc-
tor. The name of a destructor is always the name of the class preceded by a tilde,
as in ~Vector. Like constructors, a destructor has no return type. A Vector

destructor can be declared and implemented as follows:

~Vector() { delete [] buffer_; }

Note that it is not necessary to ensure that the pointer is non-null before attempt-
ing to deallocate the buffer. That’s because the delete operator will simply do
nothing if given a null pointer.

As a general rule, whenever a class contains pointers to dynamically allocated
memory, we should consider whether we need to include a destructor. The key
issue is whether the object that is begin destroyed owns the dynamically allocated
memory. If it does, then it is responsible for deallocating that memory. In the
case of Vector, each Vector object owns its buffer.

270 CHAPTER 11. IMPLEMENTATION OF VECTORS

There are circumstances where objects share access to dynamically allocated
memory. In those cases, we need to decide which of these objects owns the
memory and is responsible for eventually deallocating it.

We now turn to the copying of vectors. Every class contains a special con-
structor called a copy constructor. The role of the copy constructor, as its name
implies, is to create copies of objects. The copy constructor is called in three
different circumstances.

1. When an object is created and initialized to be a copy of another one,
through a declaration such as

Vector<T> v1(v2);

which can also be written as

Vector<T> v1 = v2;

2. When an object is passed by value to a function as in

void f(Vector<T> v)

3. When a function returns an object, as in

Vector<T> g()
{

Vector<T> v;
...
return v;

}

11.3. DESTROYING AND COPYING VECTORS 271

template <class T>
Vector<T>::Vector(const Vector & v)
{

buffer_ = get_new_buffer(v.size());
std::copy(v.begin(), v.end(), buffer_);
size_ = v.size();

}

Figure 11.7: A copy constructor

(But note that some compilers are able to avoid copying return values.)1

Whenever we don’t write a copy constructor for a class, the compiler gener-
ates one automatically. But the compiler-generated copy constructor performs
a shallow copy. This means that the values of the data members are copied but
if those data members are pointers, only the values of the pointers are copied,
not what the pointers point to. In our case, this would result in two vectors that
share the same buffer, which is not what we want.

Typically, when objects hold pointers that point to dynamically allocated
memory, what we want is a deep copy. In our case, this means that we want
the buffer to be copied so that each vector has its own copy of the buffer (and
the elements it contains).

To get a copy constructor that performs a deep copy, we must write our own.
An implementation of a Vector copy constructor is shown in Figure 11.7.

There is another method that the compiler automatically generates whenever
we don’t write one: the assignment operator. As in the case of the copy construc-

1This is done by essentially storing the local variable that is returned (v in this example)
in the memory location where the return value would be copied to. This is an example of a
compiler optimization. This particular one is called return-value optimization.

272 CHAPTER 11. IMPLEMENTATION OF VECTORS

template <class T>
Vector<T> & Vector<T>::operator=(const Vector<T> & v)
{

T ∗ new_buffer = get_new_buffer(v.size());
std::copy(v.begin(), v.end(), new_buffer);

// deallocate old buffer
delete [] buffer_;

// give new buffer to receiver
buffer_ = new_buffer;
size_ = v.size();

return ∗this;
}

Figure 11.8: An assignment operator

tor, the compiler-generated assignment operator performs a shallow copy. To get
an assignment operator that performs a deep copy, we must write our own.

A possible assignment operator for Vector is shown in Figure 11.8. The
operator has only one argument, which corresponds to the vector on the right
hand side of the assignment. The vector on the left plays the role of receiver. In
other words,

v1 = v2;

is understood by the compiler as

v1.operator=(v2);

Note that the assignment operator of Figure 11.8 does not deallocate the
current buffer of the receiver until a new buffer has been successfully allocated

11.3. DESTROYING AND COPYING VECTORS 273

and filled with a copy of the argument’s buffer. This prevents the receiver from
losing its buffer in case the allocation fails or in case the operator was used to
do assign a vector to itself as in

v = v;

The return value of the assignment operator requires some explanation. The
operator is supposed to return a reference to its receiver. This allows chains of
assignments such as

v1 = v2 = v3;

which are essentially executed as

v1.operator=(v2.operator=(v3));

In other words, the return value of the second assignment serves as the argument
(and right operand) of the first assignment.

Now, to return its receiver, the assignment operator uses the fact that within
any method of any class, the variable this always points to the receiver. But
we don’t want to return a pointer to the receiver; we need to return the receiver
itself. This is accomplished by dereferencing the pointer.

In conclusion, as a general rule, whenever we create a class that contains
pointers to dynamically allocated memory, we should always consider whether
we need to write our own destructor, copy constructor and assignment operator.
We usually do.

The version of Vector available on the course web site under Vector1.2
includes the destructor, copy constructor and assignment operator presented in
this section.

274 CHAPTER 11. IMPLEMENTATION OF VECTORS

Study Questions

11.3.1. When is the destructor is called?

11.3.2. What are the three circumstances in which the copy constructor is
called?

11.3.3. What kind of copy do the compiler-generated copy constructor and as-
signment operator perform?

11.3.4. Why doesn’t our implementation of the assignment operator begin by
deallocating the receiver’s buffer?

11.3.5. Why does the assignment operator return its receiver?

11.3.6. In the body of a method, what does this refer to?

Exercises

11.3.7. Verify that the destructor is really called when an object ceases to exist.
Do this by adding an output message to the destructor and by writing an
appropriate test driver.

11.3.8. Verify that the copy constructor is really called in the three circum-
stances explained in this section. Do this by adding an output message
to the copy constructor and writing an appropriate test driver. (Keep in
mind the possibility that your compiler performs the return value opti-
mization mentioned earlier. See if you can turn it off in your compiler’s
settings.)

11.3.9. Add the following methods to Vector. They should behave just like
their STL equivalents.

11.4. GROWING AND SHRINKING VECTORS EFFICIENTLY 275

a) clear().

b) assign(n, e).

11.4 Growing and Shrinking Vectors Efficiently

In the current version of our class Vector, the buffer is always just large enough
to contain the elements of the vector. In other words, the size of the buffer is
always equal to the size of the vector. As a consequence, every insert and
erase operation requires that we allocate a new buffer and copy all of the
elements from the current buffer to the new one. All this copying implies that
the running time of insert and erase is at least linear in the size of the vector.
The same is true for push_back and pop_back.

Is there a way to avoid all this copying? And could this lead to a significant
improvement in the running time of these operations? The answer is yes. In
fact, the STL specifies that pop_back should run in constant time and that
push_back should run in amortized constant time.

In contrast, in the current version of our class Vector, the amortized run-
ning time of both pop_back and push_back is linear. Here’s why. suppose
that we start with an empty vector and performs n push_back’s. The first
push_back allocates a buffer of size 1. No extra copying. But after that, when-
ever we allocate a buffer of size i, we copy i−1 elements from the current buffer
to the new one. These copies add up to

1+ 2+ · · ·+ (n− 1) =
(n− 1)n

2
=

n2

2
−

n
2

Dividing by n, the number of elements inserted, we get an average of n/2 −
1/2 copies per element. That implies that the amortized running time of

276 CHAPTER 11. IMPLEMENTATION OF VECTORS

template <class T>
typename Vector<T>::iterator Vector<T>::erase(

Vector<T>::const_iterator const_itr)
{

iterator itr = iterator(const_itr);
std::copy(itr + 1, end(), itr);
−−size_;
return itr;

}

Figure 11.9: The erase method

push_back is at least linear in n. A similar analysis gives the same result for
pop_back.

Now, how can the STL running times be achieved? In the case of pop_back,
it’s not too difficult. The idea is to allow the buffer to be larger than the vector.
To distinguish between the size of the buffer and the size of the vector, we will
say that the size of the buffer is the capacity of the vector. And to keep the
indexing operator simple, we will store the vector elements at the beginning of
the buffer. This will ensure that the vector index of an element matches its buffer
index.

Figure 11.9 shows an implementation of erase that uses this idea. (The
pop_back operation can then be implemented by using erase or by adapting
the implementation of erase.) The method starts by converting the argument
from a constant iterator to a plain iterator. This is necessary so we can copy to
the location that the iterator points to. The elements to the right of the element
to be erased are then shifted one position to the left. Finally, the size of the
vector is decreased by one, causing the size of the vector to be smaller than its
capacity.

11.4. GROWING AND SHRINKING VECTORS EFFICIENTLY 277

When implemented in this way, pop_back runs in constant time because no
elements need to be copied. As for erase, in the worst case, that operation still
runs in linear time because deleting from the beginning of the vector requires
all the remaining elements to be shifted. However, in general, the running time
of erase is still improved because elements to the left of the deletion point no
longer need to be copied from the current buffer to a new one.

Getting the push_back operation to run in amortized constant time is a
bit more difficult. The idea is to first notice that reallocations get increasingly
expensive as the size of the vector increases. So we can try to ensure that as the
vector grows, reallocations become less and less frequent. This can be done by
adding an increasingly larger amount of capacity to the vector at each realloca-
tion.

One strategy that works is to never increase the capacity by less than the
current size. In other words, whenever the capacity needs to increase, we will
set the new capacity as follows:

new_capacity=max(new_size, current_capacity+ current_size)

The impact of this strategy can be calculated. Suppose that we perform n
push_back’s into an initially empty vector. Whenever the buffer is reallocated,
we have that the number of elements copied from the current buffer to the new
one is equal to the current size. But

new_capacity≥ current_capacity+ current_size

which implies that

new_capacity− current_capacity≥ current_size

278 CHAPTER 11. IMPLEMENTATION OF VECTORS

Therefore,
num_copies≤ additional_capacity

Summing over every push_back that causes a reallocation, we get that

total_copies≤ final_capacity

Now, how large is the final capacity in comparison to the final size? The final
capacity of the vector is the new capacity that was set at the last push_back
that caused a reallocation. When that push_back occurred, the new capacity
could have been set to the new size. If not, then

new_capacity= current_capacity+ current_size

But the fact that a reallocation happened implies that new size is greater than
both the current size and the current capacity. Therefore,

new_capacity≤ 2 · new_size

and this inequality holds in both cases.
Putting this together with the fact that the final capacity is the new capacity

at the last reallocation, and that the new size at the last reallocation is no greater
than the final size, we get that

final_capacity≤ 2 · final_size

Therefore,
total_copies≤ 2 · final_size

Dividing by the final size, which is the number of elements inserted, we get an
average of at most 2 copies per element. By using this fact, it is possible to show

11.4. GROWING AND SHRINKING VECTORS EFFICIENTLY 279

that the amortized running time of push_back is constant. (We will learn how
to do this in detail later in these notes.)

Note that the above analysis also holds when multiple elements are added
in a single operation, as is the case with the resize operation. As for insert,
in the worst case, that operation still runs in linear time because inserting at the
beginning of the vector requires all the existing elements to be shifted. However,
in general, the running time of insert can still be improved by the above strat-
egy because it reduces the number of elements that are copied from the current
buffer to a new one.

Figure 11.10 shows an implementation of insert that uses the above strat-
egy. (Once again, the push_back operation can then be implemented by using
insert or by adapting the implementation of insert.) Like erase, insert
starts by converting the argument from a constant iterator to a plain iterator.
Then, if the vector has enough capacity, elements are shifted to make room for
the new one. Otherwise, a new buffer is allocated and the current elements are
copied from the current buffer to the new one.

This implementation of insert assumes that the class has a new data mem-
ber called capacity_ that holds the current capacity of the vector. The imple-
mentation of several of the existing constructors, methods and operators need
to be revised to set or update this data member.

The STL class vector provides three methods related to the capacity of
vectors. These methods are described in Table 11.1. Note that if the final size
of a vector is known in advance, it is always more efficient to reserve enough
capacity ahead of time than to let the vector manage its growth automatically.

The capacity method is easy to implement:

int capacity() const { return capacity_; }

The implementation of the other two methods is left as an exercise.

280 CHAPTER 11. IMPLEMENTATION OF VECTORS

template <class T>
typename Vector<T>::iterator Vector<T>::insert(

Vector<T>::const_iterator const_itr,
const T & e)

{
iterator itr = iterator(const_itr);

if (size_ < capacity_) {
std::copy_backward(itr, end(), end() + 1);
∗itr = e;
++size_;
return itr;

}
else { // size_ == capacity_

int new_capacity_ =
capacity_ + std::max(1, size_);

T ∗ new_buffer = get_new_buffer(new_capacity_);
iterator new_itr =

std::copy(begin(), itr, new_buffer);
∗new_itr = e;
std::copy(itr, end(), new_itr + 1);

delete [] buffer_;
buffer_ = new_buffer;
++size_;
capacity_ = new_capacity_;
return new_itr;

}
}

Figure 11.10: The insert method

11.4. GROWING AND SHRINKING VECTORS EFFICIENTLY 281

v.capacity()
Asks vector v for its capacity.

v.reserve(n)
Asks vector v to increase its capacity so it is at least n. If n is less than
the current capacity, nothing happens.

v.shrink_to_fit()
Asks vector v to reduce its capacity to the size of the vector. (Whether
the request is fulfilled depends on the implementation.)

Table 11.1: Vector operations related to the capacity of the vector

The version of Vector presented in this section is available on the course
web site under Vector2.0.

Exercises

11.4.1. Add the following methods to Vector. They should behave just like
their STL equivalents, including with respect to their running times.

a) push_back(e).

b) pop_back().

c) resize(n).

d) resize(n, e).

e) reserve(n).

f) shrink_to_fit(). (Make your implementation fulfill the re-
quest.)

282 CHAPTER 11. IMPLEMENTATION OF VECTORS

Chapter 12

Implementation of Linked Lists

In this chapter, we will learn how to implement a basic class of linked lists.
Dynamic memory allocation and pointers will play a key role. The techniques
we learn in this chapter are the basis for the implementation of other important
linked data structures, such as the trees and graphs.

12.1 Nodes and Links

We start by addressing the basic setup of our class of linked lists. The elements
of a linked list are supposed to be scattered in the computer’s memory and some-
how linked together. The standard way of achieving this is to store each element
together with pointers to the next and previous elements in the list. More pre-
cisely, we will store each element in a node that will combine the element, a
pointer to the node containing next element and a pointer to the node contain-
ing previous element.

Figure 12.1 shows a class ListNode that implements this idea. Because
lists are generic, we need to be able to create nodes that can store any type of

283

284 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

template <class T>
class ListNode
// T is the type of element stored in the list.
{

friend class List<T>;

private:
ListNode() :

element(), next(nullptr), previous(nullptr) {}
ListNode(const T & e,

ListNode ∗ next0,
ListNode ∗ previous0);

T element;
ListNode<T> ∗ next;
ListNode<T> ∗ previous;

};

template <class T>
ListNode<T>::ListNode(const T & e,

ListNode ∗ next0,
ListNode ∗ previous0) :

element(e), next(next0), previous(previous0) {}

Figure 12.1: A class of nodes

12.1. NODES AND LINKS 285

element. This implies that nodes must be generic too. This is why ListNode
is a class template. Its type parameter T represents the type of element stored
in the list.

List nodes are meant to be used only in the implementation of our class of
linked lists, which we will call List to distinguish from the STL class list. It’s
safer to prevent other software components from using these nodes. This is why
we declare the constructors and data members private and grant friendship only
to List.

Each List object needs to hold one node for each element in the linked list.
Where should those nodes be declared? The only way to declare a large number
of nodes inside a List object is to put them in an array or vector that’s a data
member of the List object. But eventually, this array or vector would need to
grow and this would require copying every existing node from the current array
or vector to the new larger one. This would take linear time, making it impos-
sible to implement operations like push_back, push_front and insert in
constant time.

The solution is to store the nodes outside the List object. This can be done
by dynamically allocating the nodes, the same way we dynamically allocated
arrays earlier in these notes.

Even though the nodes of our linked lists will not be stored inside the List
objects, each List object will need to be able to somehow hold its nodes. One
way is to have each List object contain a pointer to the first node in the list, as
shown in Figure 12.2. Note the use of the prefix p to make it clear that the data
member holds a pointer to the head node and not the head node itself.

The head node will not contain the first element of the list. Instead, the
head node will be a dummy head node: this node will not be used to store a
list element, it will be there only to ensure that every node has a predecessor.
This is a standard technique that eliminates special cases when implementing

286 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

template <class T>
class List
// T is the type of element stored in the List.
{
private:

ListNode<T> ∗ p_head_node;
};

Figure 12.2: The class List with a pointer to its head node

some of the list operations.

We will also have the next pointer of the last node of the list point to the
dummy head node, and the previous pointer of the dummy head node point
to the last node. This will make the list circular and ensure that every node,
including the last one, has a successor. More special cases will be eliminated
this way.

The kind of linked list we have just described is called a circular doubly-linked
list with dummy head node. The list is said to be doubly linked because each node
is linked to both its successor and predecessor.

Study Questions

12.1.1. Why can’t we store a list’s nodes inside the list object?

12.1.2. What is a dummy head node?

12.1.3. What is the advantage of having a dummy head node and making the
list circular?

12.2. SOME BASIC METHODS 287

12.2 Some Basic Methods

We are now ready to start adding operations to our class List. These operations
will form a small but representative subset of the STL list operations. You will
be asked to implement additional operations in the exercises.

The implementation of List will be done gradually. In this section, we start
with a default constructor, push_back, pop_back and back. Figure 12.3
shows a class declaration that includes those methods as well as a method
test_print that prints the contents of the list. This method is what we can call
an internal test driver: it is there only for testing purposes. It will no longer be
needed once we implement iterators and it should be removed (or commented
out) before the final version of the class is produced.

The implementation of test_print is shown in Figure 12.4. The method
traverses the linked list by using a pointer p_node that is initialized to point to
the node that contains the first element (the node that follows the dummy head
node) and then travels down the list until it reaches the dummy head node.

Note how the next pointer of the dummy head node is accessed:
p_head_node−>next. This uses the dereference-and-select operator. Recall
that this is equivalent to (∗p_head_node).next.

Note also how the pointer is made to point to the next node:

p_node = p_node−>next

This plays the same role here as adding one to an array index, or incrementing
an iterator to make it move forward.

The default constructor has to create an empty list. An empty circular doubly-
linked list with dummy head node consists of just a dummy head node whose
next and previous pointers point to the dummy head node itself. The default
constructor must allocate the dummy head node and set the pointers.

288 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

class List
// T is the type of element stored in the list.
{
public:

List();

T & back()
{

return p_head_node−>previous−>element;
}
const T & back() const
{

return p_head_node−>previous−>element;
}

void push_back(const T & new_element);
void pop_back();

void test_print() const; // for testing only

private:
ListNode<T> ∗ p_head_node;

};

Figure 12.3: A first version of List

12.2. SOME BASIC METHODS 289

template <class T>
void List<T>::test_print() const
{

for (ListNode<T> ∗ p_node = p_head_node−>next;
p_node != p_head_node;
p_node = p_node−>next) {

cout << p_node−>element << ’ ’;
}
cout << endl;

}

Figure 12.4: The internal test driver test_print

Figure 12.5 shows the implementation of the default constructor. The first
line allocates a node and stores its address in the head pointer. The second line
access the next and previous pointers of the head node and sets them to
p_head_node.

Note that to access the next and previous pointers of the dummy head node,
the default constructor needs access to the private data members of ListNode.
This is one instance where List needs to be a friend of ListNode.

template <class T>
inline List<T>::List()
{

p_head_node = new ListNode<T>;
p_head_node−>next =

p_head_node−>previous = p_head_node;
}

Figure 12.5: The default constructor

290 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

template <class T>
inline void List<T>::push_back(const T & new_element)
{

// set a pointer to the last node
ListNode<T> ∗ p_last_node = p_head_node−>previous;

// create new node and set its contents
ListNode<T> ∗ p_new_node =

new ListNode<T>(new_element, p_head_node,
p_last_node);

// finish linking new node to list
p_last_node−>next = p_new_node;
p_head_node−>previous = p_new_node;

}

Figure 12.6: The push_back method

Figure 12.3 includes the implementation of two versions of the back

method. The constant version will be chosen automatically be the compiler
for use on constant lists: it returns a constant reference to prevent the user
from modifying the list. The non-constant version of back will be used on non-
constant lists: it returns a plain reference that allows the user to modify the last
element of the list.

Implementations of push_back and pop_back are shown in Figures 12.6
and 12.7. The comments describe what these methods do. To follow this kind
of code, it is very useful to draw pictures that show the nodes and the pointers
that link those notes. Drawing such pictures is also very useful when writing the
code.

Complete source code for this first version of our class List is available on

12.2. SOME BASIC METHODS 291

template <class T>
inline void List<T>::pop_back()
{

// set pointers to last node and node that will
// become last
ListNode<T> ∗ p_last_node = p_head_node−>previous;
ListNode<T> ∗ p_new_last_node =

p_last_node−>previous;

// modify the list to skip the last node
p_new_last_node−>next = p_head_node;
p_head_node−>previous = p_new_last_node;

// deallocate the last node
p_last_node−>next =

p_last_node−>previous = nullptr;
delete p_last_node;

}

Figure 12.7: The pop_back method

292 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

the course web site under List1.0.

Exercises

12.2.1. Add the following methods, constructors and operators to List. They
should behave just like their STL equivalents.

a) size(). (To implement this method efficiently, add a new data
member to the class to keep track of the current size of the list.)

b) empty().

c) front(). (Make sure to include both a constant and a non-constant
version.)

d) push_front(e).

e) pop_front().

f) List(n).

g) List(n, e).

h) List(init_list).

i) clear().

j) Equality and inequality testing operators (==, !=). (As usual, it is
better to implement these operators as standalone functions so that
implicit conversions can occur on both sides of the operators. This re-
quires that at least one of the operators be a friend of both ListNode
and List. This can be done by putting an advance declaration of the
operator before the declaration of those two classes and then adding
to the classes a friendship declaration similar to this one:

12.3. ITERATORS, INSERT AND ERASE 293

friend bool operator==<T>(
const List<T> & ls1,
const List<T> & ls2);

Note how the template parameter must be explicitly listed. Other-
wise, the compiler would have no way of knowing that the friendship
declaration refers to a function template.)

k) swap(). (Make sure that no elements are copied.)

12.2.2. If, in the previous exercise, you used push_back or push_front to
implement the constructors List(n) and List(n, e), revise those im-
plementations to avoid using those methods. If done carefully, these im-
plementations can be more efficient. Hint: If you add new elements at the
end of the list, there is no need to link the last node with the head node
after every insertion.

12.3 Iterators, Insert and Erase

We now add iterators to our class of linked lists. This will require some thought.
First, list iterators cannot simply be pointers to elements. If they were, then

dereferencing an iterator (by using the ∗ operator) would give access to the
element that the iterator points. But incrementing the iterator would result in
an iterator that points to the next memory location and this is not where the
next element is located.

Second, list iterators cannot simply be pointers to nodes either. In that case,
dereferencing an iterator would not give access to an element but to the node
that contains that element. In addition, incrementing such an iterator would

294 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

template <class T>
class ListIterator
// T is the type of element stored in the List.
{
public:

ListIterator() : p_current_node(nullptr) {}

...

private:
explicit ListIterator(ListNode<T> ∗ p) :

p_current_node(p) {}

ListNode<T> ∗ p_current_node;
// points to the node that contains the
// element that the iterator currently
// points to

};

Figure 12.8: ListIterator

result in an iterator that points to the next memory location, which may very
well not be where the next node is stored.

Therefore, list iterators will have to be objects that we define ourselves. From
the user’s perspective, a list iterator points to an element. We will implement
this by having the iterator hold a pointer to the node that contains that element,
as shown in Figure 12.8.

We’re including two constructors in our iterator class. One is a default con-
structor that initializes the iterator to contain a null pointer. We know that it’s
good practice not to leave variables with unspecified values. But the STL also

12.3. ITERATORS, INSERT AND ERASE 295

requires that default iterators evaluate to equal when compared by using the ==
operator. Having these iterators all contain a null pointer will make it easy to
achieve this.

The second constructor is a private helper constructor that will allow lists
to easily create iterators with specific pointers. (We will see examples of this
later in this section.) Note that this constructor is declared explicit so that
all conversions from pointers to iterators must be done explicitly. This is slightly
less convenient than allowing implicit conversions but it may be a little safer and
lead to code that’s a bit easier to understand.

Figure 12.9 shows the implementation of the dereferencing operator (∗),
the derefencing-and-select operator (−>) and the equality and inequality testing
operators (==, !=).

The overloading of the dereferencing-and-select operator requires some ex-
planation. This operator is used when the list elements are objects or struc-
tures. For example, if itr points to an element in a list of Time’s, then
itr−>hours() will return the hours of the time. Now, when the compiler
sees the operator used as

itr−>member

it will interpret it as

(itr.operator−>())−>member

This implies that we need to make our overloaded −> operator return a pointer
to the list element. The implementation shown in Figure 12.8 achieves this by
using the address-of operator (&). This unary operator returns a pointer to its
operand.

Figure 12.10 shows the implementation of the prefix ++ operator. The oper-
ator needs to return the receiver so that code such as

296 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

T & operator∗() const
{

return p_current_node−>element;
}

T ∗ operator−>() const
{

return &(p_current_node−>element);
}

bool operator==(const ListIterator & rhs) const
{

return (p_current_node == rhs.p_current_node);
}

bool operator!=(const ListIterator & rhs) const
{

return (p_current_node != rhs.p_current_node);
}

Figure 12.9: The operators ∗, −>, == and != of class ListIterator

template <class T>
inline ListIterator<T> & ListIterator<T>::operator++()
// prefix version (++itr)
{

p_current_node = p_current_node−>next;
return ∗this;

}

Figure 12.10: The prefix ++ operator of class ListIterator

12.3. ITERATORS, INSERT AND ERASE 297

template <class T>
inline ListIterator<T> ListIterator<T>::operator++(int)
// postfix version (itr++)
{

ListIterator<T> original_itr = ∗this;
p_current_node = p_current_node−>next;
return original_itr;

}

Figure 12.11: The postfix ++ operator of class ListIterator

itr1 = ++itr2;

can work properly. Recall that in a method, the variable this always points to
the receiver.

Figure 12.11 shows the implementation of the postfix ++ operator. Note how
a dummy integer argument is used to distinguish between the prefix and postfix
versions of this operator. In addition, note how the postfix version saves a copy
of the iterator before incrementing it.

Most iterator operations need to access the three ListNode members
element, next and previous. A convenient way of making this possible
without making these data members public is to have ListNode grant friend-
ship to ListIterator.

To complete the addition of iterators to our class of linked lists, we need to
define the iterator type and implement the methods begin and end. Recall
that the users of STL lists expect that list iterators will be of type

list<T>::iterator

Therefore, we include in our class List the following declaration:

298 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

iterator begin()
{

return iterator(p_head_node−>next);
}
iterator end() { return iterator(p_head_node); }

Figure 12.12: The begin and end methods

typedef ListIterator<T> iterator;

This will cause List<T>::iterator to mean ListIterator<T>.
The begin and end methods can be implemented as shown in Figure 12.12

In each of these methods, an iterator is constructed from a pointer to a node
by using the private constructor of class ListIterator. We can allow these
methods to access this constructor by making List a friend of ListIterator.

Constant iterators can be added to List by duplicating the ListIterator
code and making some small modifications to it. Figure 12.13 shows the needed
changes. They mostly consist in declaring that pointers and references point or
refer to constant elements. But note that the class also contains an additional
constructor that allows a non-constant iterator to be converted into a constant
iterator. (But we don’t allow the reverse conversion.) The implementation
of this constructor requires that ConstListIterator be made a friend of
ListIterator.

We also need to add to List the declaration of the type const_iterator,
the constant versions of begin and end, as well as the methods cbegin and
cend. These are shown in Figure 12.14.

Now that we have iterators, we can add a few more methods to our class
List. But first, let’s write a print function that can be used for testing. This
function is shown in Figure 12.15. Note that we can use a range-for loop on a

12.3. ITERATORS, INSERT AND ERASE 299

template <class T>
class ConstListIterator
// T is the type of element stored in the List.
{

friend class List<T>;

public:
ConstListIterator(const ListIterator<T> & itr) :

p_current_node(itr.p_current_node) {}

const T & operator∗() const
{

return p_current_node−>element;
}
const T ∗ operator−>() const
{

return &(p_current_node−>element);
}

...

private:
explicit ConstListIterator(const ListNode<T> ∗ p) :

p_current_node(p) {}

const ListNode<T> ∗ p_current_node;
// points to the node that contains the
// element that the iterator currently
// points to

};

Figure 12.13: The declaration of ConstListIterator

300 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

typedef ConstListIterator<T> const_iterator;

const_iterator begin() const
{

return const_iterator(p_head_node−>next);
}
const_iterator end() const
{

return const_iterator(p_head_node);
}

const_iterator cbegin() const
{

return const_iterator(p_head_node−>next);
}
const_iterator cend() const
{

return const_iterator(p_head_node);
}

Figure 12.14: The const_iterator type and the constant versions of begin
and end

template <typename T>
void print(const List<T> & ls)
{

for (const T & e : ls) cout << e << ’ ’;
cout << ’\n’;

}

Figure 12.15: A function that prints a List

12.3. ITERATORS, INSERT AND ERASE 301

constant list such as ls only because we added constant iterators to our class of
linked lists.

Figures 12.16 and 12.17 show the implementation the insert and erase
methods. These implementations use the fact that List can access the private
members of the node and iterator classes. Once again, the code implementing
these methods is easier to follow by drawing pictures. Note how the pointer
of the constant iterator received as argument must be cast to a non-constant
pointer to allow us to modify the node.

Source code for a second version of List that includes iterators and
the insert and erase methods is available on the course web site under
List1.1.

Study Questions

12.3.1. What type of value should an overloaded operator −> return?

12.3.2. Why does the iterator operator ++ return its receiver?

Exercises

12.3.3. Add the following methods and operators to List. They should behave
just like their STL equivalents.

a) Equality and inequality testing operators (==, !=). (If you did this
exercise in the previous section, you did it using pointers. Redo it
now using iterators. But don’t use the STL algorithm equal because
our List iterators do not meet all the requirements for interacting
properly with STL algorithms.)

b) remove(e).

302 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

template <class T>
inline typename List<T>::iterator List<T>::insert(

const_iterator const_itr,
const T & new_element)

{
// set pointer to the node that should follow the
// new one
ListNode<T> ∗ p_next_node =

(ListNode<T> ∗)(const_itr.p_current_node);

// set pointer to the node that should precede the
// new one
ListNode<T> ∗ p_previous_node =

p_next_node−>previous;

// create new node and set its contents
ListNode<T> ∗ p_new_node =

new ListNode<T>(new_element,
p_next_node, p_previous_node);

// set next and previous nodes to point to the new
// node
p_previous_node−>next = p_new_node;
p_next_node−>previous = p_new_node;

return iterator(p_new_node);
}

Figure 12.16: The insert method

12.3. ITERATORS, INSERT AND ERASE 303

template <class T>
inline typename List<T>::iterator List<T>::erase(

const_iterator const_itr)
{

// set pointer to the node to be deleted
ListNode<T> ∗ p_target_node =

(ListNode<T> ∗)(const_itr.p_current_node);

// set pointers to the nodes that precede and
// follow the target node
ListNode<T> ∗ p_previous_node =

p_target_node−>previous;
ListNode<T> ∗ p_next_node = p_target_node−>next;

// modify the list to skip the target node
p_previous_node−>next = p_next_node;
p_next_node−>previous = p_previous_node;

// deallocate the target node
p_target_node−>next =

p_target_node−>previous = nullptr;
delete p_target_node;

return iterator(p_next_node);
}

Figure 12.17: The erase method

304 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

c) erase(start, stop).

d) reverse(). (Make sure your implementation works for lists of odd
and even length. No iterators should be invalidated.)

12.3.4. If, in the previous exercise, you implemented erase(start, stop)

by calling erase(itr) repeatedly, revise the implementation to avoid
doing that. If done carefully, this implementation can be more efficient.

12.4 Destroying and Copying Linked Lists

Our List objects point to dynamically allocated nodes. And each List objects
owns its own nodes. Therefore, as was the case with our implementation of
vectors, we need to add a destructor, copy constructor and assignment operator
to List.

A destructor is shown in Figure 12.18. The destructor begins by deleting all
the elements of the list by using the pop_back operation. This is done in a loop
that runs while the list is not empty. We can tell when the list becomes empty
by comparing the begin and end iterators. After all the elements of the list have
been deleted, the dummy head node is deallocated. Note that it would be more
efficient to use the size or empty methods. An exercise asks you to do this.

A possible implementation of a copy constructor is shown in Figure 12.19.
After initializing the list to be empty, through delegation to the default construc-
tor, the copy constructor simply goes through the argument list and adds a copy
of each of its elements to the back of the receiver.

An assignment operator is shown in Figure 12.20. The operator first creates
a copy of the argument rhs. This means that the actual copying of the elements
(and nodes) is done by the copy constructor. We then exchange the nodes of
the copy with those of the receiver by using the STL algorithm swap. The old

12.4. DESTROYING AND COPYING LINKED LISTS 305

template <class T>
List<T>::~List()
{

// erase all elements
while (begin() != end()) pop_back();

// deallocate dummy head node
delete p_head_node;

}

Figure 12.18: The destructor

template <class T>
List<T>::List(const List<T> & ls) : List<T>()
{

for (const T & e : ls) push_back(e);
}

Figure 12.19: A copy constructor

template <class T>
inline List<T> & List<T>::operator=(

const List<T> & rhs)
{

List<T> copy_of_rhs = rhs;
std::swap(p_head_node, copy_of_rhs.p_head_node);
return ∗this;
// old contents of receiver is deallocated when
// copy_of_rhs is destroyed

}

Figure 12.20: An assignment operator

306 CHAPTER 12. IMPLEMENTATION OF LINKED LISTS

contents of the receiver, which is now the contents of copy_of_rhs, will be
discarded by the destructor when the assignment operator returns.

The entire source code for our class of linked lists is available on the course
web site under List1.2.

Exercises

12.4.1. Revise the destructor so it uses the size or empty methods you imple-
mented for an exercise earlier in this chapter.

12.4.2. Implement the destructor without using other methods such as
pop_back. If done carefully, a more direct implementation can be more
efficient.

12.4.3. Implement the copy constructor without using other methods such as
push_back. If done carefully, a more direct implementation can be more
efficient.

Chapter 13

Analysis of Algorithms

In this chapter, we will learn how to analyze algorithms in order to evaluate
their efficiency. We will see how analysis can be carried out from pseudocode,
which allows us to choose efficient algorithms without having to implement the
inefficient ones. We will also discuss the relative benefits and disadvantages of
analysis as opposed to measuring exact running times through testing.

13.1 Introduction

From a user’s perspective, quality software must be reliable, robust, easy to use
and efficient. In these notes, we have also emphasized that software, especially
large software, must be designed so it is easy to understand, code, test and
modify. And we have seen that modularity and abstraction help to achieve these
qualities.

There is a lot more that can be learned about all of these topics. For exam-
ple, reliability is normally achieved through a mix of testing and verification. At
Clarkson, testing is covered in more detail in a course such as CS350 Software

307

308 CHAPTER 13. ANALYSIS OF ALGORITHMS

Design and Development while verification is the main focus of CS458 Formal
Methods for Software Verification. As its title indicates, CS350 also covers soft-
ware design. Usability is the main topic of CS459 Human-Computer Interaction,
while efficiency is the central focus of CS344 Algorithms and Data Structures and
CS447 Computer Algorithms.

In these notes, we already considered efficiency when choosing a data struc-
ture to store data in the text editor and phone book programs. Later in these
notes, efficiency will be the main consideration when we learn algorithms for
searching and sorting data.

In this chapter, we will learn to evaluate the efficiency of algorithms. We will
do this by analyzing the algorithms. We will learn that this can be done from
pseudocode, which allows us to choose efficient algorithms without wasting time
and energy implementing inefficient alternatives.

Note that algorithm analysis is also useful for the analysis of data structures,
if only because data structure operations are algorithms.

In general, an algorithm is efficient if it uses a small amount of computational
resources. The two resources that are most often considered are running time
and memory space. An example of another resource is randomness.1 In this
chapter, we will focus on running time but the main concepts and techniques
we will learn also apply to other resources.

Study Questions

13.1.1. What are some of the properties quality software should have?

13.1.2. What does it mean for software to be efficient?

1Algorithms that use randomness are usually studied in a course such as CS447 Computer
Algorithms.

13.2. MEASURING EXACT RUNNING TIMES 309

13.1.3. What two computational resources are most often considered?

13.2 Measuring Exact Running Times

When choosing or designing an algorithm for a particular problem, there are
two questions that can be asked: Is the algorithm fast enough? Is it as fast as
possible?

The first question is perhaps the more pragmatic. To be able to answer that
question, however, we need to know exactly what is meant by fast enough. One
possibility would be precise time targets such as 5 ms. Now, the running time
of an algorithm depends on several factors including what data it is used on,
what computer it runs on and exactly how it is coded. (The input data could
be arguments, input files or data entered by the user.) If all that information is
available, then tests can be run to accurately determine if the algorithm is fast
enough.

But very often, there are no precise time targets to meet. In that case, the
safest approach is to choose the fastest algorithm among the available alterna-
tives. So how can we determine which of several possible algorithms is fastest?

An obvious way is to implement each of the algorithms, run them and mea-
sure their running times. The choice of what computer to use probably doesn’t
matter much since if an algorithm is significantly faster than another on one
computer, the same is probably true on most if not all computers.

A more delicate issue is what inputs to use for the tests. Very often, we need
an algorithm that will run well on a wide variety of inputs. So we could run tests
on various inputs and compute the average running time of each algorithm. But
the running time of an algorithm can vary greatly, especially as a function of the
size of the input.

For example, suppose that three algorithms have running times log n µs, n µs

310 CHAPTER 13. ANALYSIS OF ALGORITHMS

n 10 103 106

log2 n µs 3 µs 10 µs 20 µs

n µs 10 µs 1 ms 1 s

n2 µs 100 µs 1 s 12 days

Table 13.1: Running times of three algorithms

and n2 µs, where n is the size of the input. Table 13.1 shows what these running
times are for various input sizes. When the input size is only 10, the difference
between the running time of these three algorithms run is not that large. But at
n= 103, the difference is significant and at n= 106, it is huge. Therefore, when
comparing algorithms by measuring their running times, it is important to use
a wide range of input sizes.

So we can determine which of several algorithms will be the fastest as fol-
lows: implement the algorithms, run them on a wide variety of inputs, and
measure the running times. Of course, for the comparisons to be valid, the al-
gorithms must be coded in the same language and run on the same computer
and similar inputs.

This approach has several significant disadvantages. First, it requires that
all the algorithms be implemented, even those than will end up not being used.
Second, writing test drivers and running tests takes time, especially since we
must test on a good number of inputs of each size to make sure we have a
representative sample. Third, because all the algorithms being compared must
be implemented in the same language and tested on the same computer and on
similar inputs, earlier tests done on different computers, with different inputs,
or using different programming languages often need to be repeated.

13.3. ANALYSIS 311

for i = 0 to n−1
print a[i]

Figure 13.1: Printing the contents of an array

In the rest of this chapter, we will learn that it is possible evaluate the running
time of an algorithm in a way that addresses these problems.

Study Questions

13.2.1. When comparing the efficiency of algorithms, why is it usually impor-
tant to compare running times over a wide range of input sizes?

13.2.2. What are three significant weaknesses of comparing algorithms by mea-
suring exact running times?

13.3 Analysis

Our goal is to find a way to assess the running time of an algorithm without
having to implement and test it. We also want this assessment to be valid for
all implementations of the algorithm and for all the computers on which the
algorithm may run. And, of course, to be useful, this assessment should allow
us to compare the running time of various algorithms.

Let’s consider an example. Figure 13.1 shows pseudocode for an algorithm
that prints the contents of an array. The running time of this algorithm can be
determined as follows. Before the first iteration of the loop, i is initialized and
its value is compared to n−1. At every iteration of the loop, an array element
is accessed, then printed, i is incremented and then again compared to n. The

312 CHAPTER 13. ANALYSIS OF ALGORITHMS

loop is executed n times. Therefore, the running time of the algorithm is

t(n) = cassign + ccomp + (cindex + cprint + cincr + ccomp)n

where the c constants are the running times of the various basic operations per-
formed by the algorithm. For example, cassign is the time it takes to assign a value
to an integer variable.2

We can simplify this expression by letting a = cindex + cprint + cincr + ccomp and
b = cassign + ccomp. The running time of the algorithm can then be written as

t(n) = an+ b

If we knew the exact values of the constants a and b, this expression would
allow us to determine the exact running time of the algorithm on inputs of any
size. But the values of these constants depend on exactly how the algorithm
is implemented and on which computer the algorithm will run. Recall that we
want to assess the running time of an algorithm without having to implement
it. We also want this assessment to be valid for all computers. Therefore, we
will not determine the values of the constants and instead focus on the “general
form” of the running time as a function of n.

In our example, the running time of the printing algorithm is a linear function

2It is not exactly true that the running time of these basic operations is constant. For example,
the time it takes to assign a value to an integer variable usually depends on the maximum value
that can be held in that integer variable. But it is common practice to consider that all the basic
operations typically provided by programing languages can be executed in constant time. A
more precise analysis would rarely lead to different conclusions. This issue is normally examined
in more detail in courses such as CS344 Algorithms and Data Structures and CS447 Computer
Algorithms. The representation of integer values in a computer’s memory, as well as some aspects
of the implementation of the basic operations on those integers, are covered in CS241 Computer
Organization.

13.3. ANALYSIS 313

of n. Is that useful information? Knowing that the running time is a linear
function doesn’t allow us to determine the exact running time of the algorithm
for any input size. But suppose that another algorithm has a running time that’s a
quadratic function of n, for example. Then we know that when n is large enough,
the printing algorithm runs faster, much faster, than this other algorithm. This
basic fact about linear and quadratic functions is apparent in the numbers that
were given in Table 13.1. Therefore, is is useful to know that the running time
of the printing algorithm is a linear function of n.

So analyzing an algorithm to determine the general form of its running time
is a useful alternative to the measurement of exact running times through test-
ing. It is useful because it can be used to determine that an algorithm will be
faster than another one on every input that is large enough.

Analysis has three main advantages over measuring exact running time
through testing. First, analysis can be carried out from pseudocode, without
having to implement the algorithms. Second, analysis does not require writing
test drivers or performing possibly time-consuming tests. Third, each algorithm
needs to be analyzed only once because the results of the analysis are valid for
every (reasonable) implementation of the algorithm and every computer and
data the algorithm may run on.

On the other hand, analysis has two main disadvantages over measuring ex-
act running times. First, it is not as precise. For example, it does not allow
us to distinguish between two linear-time algorithms or to determine if an algo-
rithm meets specific time targets. Second, analysis is valid only for large enough
inputs, not for small ones.

In general, analysis is a convenient and reliable way of quickly identifying
large differences in running times. When more accuracy is needed, or when the
analysis is too difficult, which can happen, we must then resort to measuring
exact running times through testing.

314 CHAPTER 13. ANALYSIS OF ALGORITHMS

Study Questions

13.3.1. As described in this section, what does analysis seek to determine?

13.3.2. What are three advantages and two disadvantages of analysis over the
measurement of exact running times through testing?

13.4 Asymptotic Running Times

In the previous section, we saw that the general form of the running time of an
algorithm, when expressed as a function of a parameter such as its input size, is
a useful measure of the efficiency of the algorithm. For example, if we determine
that an algorithm has a linear running time then we know that it will run faster
than any quadratic-time algorithm on every input that is large enough.

But what should we make of a running time of the form an + b log n + c?
How does that compare to linear and quadratic running times, for example?

The key point to remember is that analysis allows us to compare the running
time of algorithms for large enough input sizes. When n is large enough, the terms
b log n and c are insignificant compared to an. In other words, the dominant
term an is the one that will essentially determine the running time for large
enough values of n. This means that when n is large enough, an + b log n + c
will behave essentially like the linear function an. In particular, an+ b log n+ c
will be much smaller than any quadratic function for every large enough n.

Therefore, when analyzing an algorithm, we can focus on determining the
dominant term of the running time. In addition, since the value of the constant
factor of the dominant term is not known (because it depends on a particular
implementation and computer), it is irrelevant to our analysis and we might
as well ignore it. What we are left with is what can be called the asymptotic

13.4. ASYMPTOTIC RUNNING TIMES 315

running time of an algorithm. For example, if the running time of an algorithm
is an+ b log n+ c, then we say that its asymptotic running time is n.

The relationship between the exact running time of an algorithm and its
asymptotic running time can be made precise through the notion of asymptotic
equivalence. We say that two running times are asymptotically equivalent if they
are within a constant factor of each other for every large enough input. This can
be formalized as follows:

Definition 13.1 We say that f (n) is asymptotically equivalent to g(n), or that
f (n) is Θ(g(n)) (“ f (n) is Theta of g(n)”), if there are positive constants a, b and
n0 such that for every n≥ n0,

ag(n)≤ f (n)≤ bg(n)

Loosely speaking, when a function is asymptotically equivalent to another
one, it means that when n is large enough, the two functions have similar values.
So we can view asymptotic equivalence as meaning “about the same”.

The relationship between the exact running time of an algorithm and its
asymptotic running time is given by the following property of asymptotic equiv-
alence:

Property 13.2 If f (n) has dominant term cg(n), where c is a constant, then f (n)
is Θ(g(n)).

In our example, we have that the dominant term of an + b log n + c is an.
Therefore, an+ b log n+ c is Θ(n).

Note that it is also true that an+ b log n+ c is Θ(an) and that an+ b log n+ c
is Θ(an+ b log n+ c). But the statement an+ b log n+ c is Θ(n) is more useful
because it makes it easier to compare to other running times. For example, every

316 CHAPTER 13. ANALYSIS OF ALGORITHMS

running time of form an + b is also Θ(n). This implies that an + b log n + c is
asymptotically equivalent to every running time that’s a linear function of n.

The statement “ f (n) is Θ(g(n))” is often written “ f (n) = Θ(g(n)).” But note
that this equal sign is not a real equal sign. In particular, it doesn’t make sense
to write “Θ(g(n)) = f (n).”

We will not define precisely what is meant by dominant term. This could be
done but involves mathematical concepts that some of you may not be familiar
with.3 In most situations, it is clear what the dominant term of a running time is.

In the previous section, we said that the goal of analysis is to determine the
“general form” of the running time of an algorithm. We can now be more precise:
the goal is to determine the asymptotic running time of an algorithm. For this
reason, this type of analysis is called asymptotic analysis.

In other words, and to summarize, when we do asymptotic analysis, we de-
termine the running time of an algorithm as a function of its input size (or some
other parameter), we simplify the running time by keeping only its dominant
term and removing its constant factor, and we use the Θ notation. In addition,
when we say that an algorithm has asymptotic running time f (n), what we mean
is that the running time of the algorithm is Θ(f (n)) and that we have removed
low-order terms and constant factors from f (n).

Several examples of asymptotic running times, and how they compare to
each other, will be given in the next section. Later in this chapter, we will learn
basic strategies for analyzing the running time of simple algorithms.

Study Questions

13.4.1. What is the asymptotic running time of an algorithm?

3One possible definition is to say that g(n) is the dominant term of f (n) if for every other
term h(n) of f (n), we have that limn→∞(h(n)/g(n)) = 0.

13.4. ASYMPTOTIC RUNNING TIMES 317

13.4.2. How exactly does the asymptotic running time of an algorithm relate to
its exact running time?

13.4.3. What does it mean for two running times to be asymptotically equiva-
lent?

13.4.4. What is the main advantage of simplifying the running time of an algo-
rithm?

13.4.5. What is asymptotic analysis?

Exercises

13.4.6. Below is a series of statements of the form f (n) = Θ(g(n)). Prove that
each of these statements is correct by finding, in each case, positive con-
stants a, b and n0 such that ag(n) ≤ f (n) ≤ bg(n) for every n ≥ n0.
Justify your answers.

a) n+ 10= Θ(n).

b) n2 + n= Θ(n2).

c) 3n2 − n= Θ(n2).

d) 3n2 − n+ 10= Θ(n2).

13.4.7. Show that if c and d are any two numbers greater than 1, then logc n=
Θ(logd n). (This implies that when specifying running times using the Θ
notation, it is not necessary to specify the base of logarithms.)

318 CHAPTER 13. ANALYSIS OF ALGORITHMS

RUNNING TIME COMMON NAME TYPICAL EXAMPLE

Θ(1) constant a single basic operation

Θ(log n) logarithmic fast searching algorithms

Θ(n) linear simple searching algo-
rithms

Θ(n log n) n log n fast sorting algorithms

Θ(n2) quadratic simple sorting algorithms

Θ(nk) polynomial most algorithms that are
fast enough to be useful in
practice

Θ(cn), where c > 1 exponential exhaustive searches of very
large sets

Θ(n!) factorial same as above

Table 13.2: Some common running times

13.5 Some Common Running Times

Table 13.2 gives a list of common asymptotic running times, in order, from small-
est to largest. In this table, c and k are constants. The running times in Ta-
ble 13.2 are listed in increasing order in the sense that when n is sufficiently
large, each running time in this table is much larger than the preceding ones
and much smaller than the following ones. (You need k > 2 for nk to be larger
than n2.)

We already saw numbers that show how large a difference there is between

13.6. BASIC STRATEGIES 319

n 10 20 40 60 80

n µs 10 µs 20 µs 40 µs 60 µs 80 µs

n2 µs 0.1 ms 0.4 ms 1.6 ms 3.6 ms 6.4 ms

2n µs 1 ms 1 s 13 days 37× 103 years 38× 109 years

Table 13.3: More execution times

logarithmic, linear and quadratic running times (see Table 13.1). Table 13.3
provides some numbers that compare linear, quadratric and exponential running
times. These tables make it clear that quadratic-time algorithms are usually im-
practical on large inputs and that exponential-time algorithms are useless even
for inputs of a moderate size.

Exercises

13.5.1. To each of Tables 13.1 and 13.3, add rows for the running times n log2 n
and n3.

13.5.2. How large does n have to be before 2n is larger than each of the following
functions: n, n2, n3 and n6?

13.6 Basic Strategies

The examples in this section illustrate basic strategies that can be used in the
analysis of simple algorithms. Some of these strategies rely on certain properties
of asymptotic equivalence (the Θ notation).

320 CHAPTER 13. ANALYSIS OF ALGORITHMS

Example 13.3 Many algorithms are a sequence of steps performed by other al-
gorithms. Suppose that an algorithm consists of three steps, performed by algo-
rithms A, B and C , in that order. Let TA(n), TB(n) and TC(n) denote the running
time of these algorithms. Then the running time of the overall algorithm is sim-
ply the sum of those running times:

T (n) = TA(n) + TB(n) + TC(n)

Now, suppose that the running times of these algorithms are Θ(n), Θ(1) and
Θ(n), respectively. Then we can write that

T (n) = Θ(n) +Θ(1) +Θ(n)

This simply means that T (n) is the sum of three functions and these functions
are Θ(n), Θ(1) and Θ(n), respectively.

It should be clear that one of the Θ(n) functions will dominate and therefore
that T (n) is Θ(n). ut

The conclusion at the end of this example can be justified informally by re-
ferring to the definition of the Θ notation, as follows. The fact that the three
functions are Θ(n), Θ(1) and Θ(n) tells us that there are positive constants b1,
b2 and b3 such that

T (n)≤ b1n+ b2 + b3n

Therefore,
T (n)≤ b1n+ b2n+ b3n= (b1 + b2 + b3)n

On the other hand, the fact that the three functions are Θ(n), Θ(1) and Θ(n)
also tells us that there are positive constants a1, a2 and a3 such that

T (n)≥ a1n+ a2 + a3n

13.6. BASIC STRATEGIES 321

Therefore,
T (n)≥ a1n+ a3n= (a1 + a3)n

So we have that
an≤ T (n)≤ bn

where a = a1 + a3 and b = b1 + b2 + b3. This means that T (n) = Θ(n).
The above argument is informal because it ignores the n0 constant in the

definition of the Θ notation. In other words, the argument ignores the fact that
these inequalities don’t hold for every value of n but only when n is large enough.

But it is possible to carry out these arguments more formally. In fact, it is
possible to prove that the Θ notation is both additive and transitive.

Property 13.4 (Additivity) Suppose that f1(n) = Θ(g1(n)) and f2(n) =
Θ(g2(n)). Then f1(n) + f2(n) = Θ(g1(n) + g2(n)).

Intuitively, this property makes sense: if f1(n) is about the same as g1(n), and
if f2(n) is about the same g2(n), then f1(n) + f2(n) should be about the same as
g1(n) + g2(n).

In the previous example, since T (n) = Θ(n)+Θ(1)+Θ(n), additivity can be
used to conclude that T (n) = Θ(2n+ 1).

Property 13.5 (Transitivity) If f (n) is Θ(g(n)) and g(n) is Θ(h(n)), then f (n)
is Θ(h(n)).

Once again, transitivity makes sense: if f (n) is about the same g(n) and g(n)
is about the same h(n), then f (n) should be about the same h(n).

In the previous example, since T (n) = Θ(2n+1) and 2n+1= Θ(n), additivity

322 CHAPTER 13. ANALYSIS OF ALGORITHMS

for i = 0 to n−1
print a[i]

Figure 13.2: Printing the contents of an array

can be used to conclude that T (n) = Θ(n). To summarize,

T (n) = Θ(n) +Θ(1) +Θ(n)

= Θ(n+ 1+ n) (by additivity)

= Θ(2n+ 1)

= Θ(n) (since 2n+ 1= Θ(n) and by transitivity)

Example 13.6 To practice, let’s do a variation on the previous example. Sup-
pose that the running times of the algorithms A, B and C are now Θ(n), Θ(n2)
and Θ(1), respectively. Then

T (n) = Θ(n) +Θ(n2) +Θ(1)

= Θ(n+ n2 + 1)

= Θ(n2)

ut

Example 13.7 Besides consecutive steps, loops are another very common form
of algorithm. Figure 13.2 shows an algorithm we considered earlier in this chap-
ter. It prints the contents of an array. This algorithm has the very common
general form

for (init; test; update) body

13.6. BASIC STRATEGIES 323

for i = 0 to n−1
for j = 0 to n−1

print a[i,j]

Figure 13.3: Printing the contents of a two-dimensional array

where init stands for initialization. In our case, the initialization is i = 0,
the test could be i < n, the update is ++i and the body is print a[i].

Very frequently, as is the case here, the operations that manage the loop all
run in constant time and the body of the loop takes the same amount of time
at each iteration of the loop. In this example, the body of the loop also runs in
constant time. Therefore, the running time of the loop is

T (n) = cinit + ctest + n(cbody + cupdate + ctest)

Clearly, T (n) = Θ(n). ut

Example 13.8 Figure 13.3 shows an algorithm that consists of two nested loops.
It prints the contents of a two-dimensional array. The usual strategy for analyz-
ing nested loops is to work from the inside out.

The inner loop can be analyzed as in the previous example. Its running
time is

Tinner(n) = Θ(n)

The outer loop is also of the general form

for (init; test; update) body

But this time, the body of the loop (which is the inner loop) does not run in

324 CHAPTER 13. ANALYSIS OF ALGORITHMS

constant time. Therefore, the running time of the outer loop is

Touter(n) = cinit + ctest + n(Tbody(n) + cupdate + ctest)

The dominant term in this expression is nTbody(n). Therefore,

Touter(n) = Θ(nTbody(n))

Now, since the body of the outer loop is the inner loop, we have that
Tbody(n) = Tinner(n) = Θ(n). It seems clear that this implies that nTbody(n) =
Θ(n2) and therefore that Touter(n) = Θ(n2). ut

Once again, the conclusion at the end of the previous example can be jus-
tified informally by referring to the definition of the Θ notation. The fact that
Tbody(n) = Θ(n) tells us that there are constants a and b such that

an≤ Tbody(n)≤ bn

Therefore,
an2 ≤ nTbody(n)≤ bn2

This means that nTbody(n) = Θ(n2).
This argument can be made more formal and used to prove another property

of the Θ notation, the fact that it is multiplicative.

Property 13.9 (Multiplicativity) Suppose that f1(n) = Θ(g1(n)) and f2(n) =
Θ(g2(n)). Then f1(n) f2(n) = Θ(g1(n)g2(n)).

In our example, since n = Θ(n) and tbody(n) = Θ(n), multiplicativity can be
used to conclude that nTbody(n) = Θ(n2). Then, since Touter(n) = Θ(nTbody(n)),
we get that Touter(n) = Θ(n2), by transitivity.

13.6. BASIC STRATEGIES 325

for i = 0 to n−1
for j = 0 to i−1

print a[i,j]

Figure 13.4: Printing the lower left triangle of a two-dimensional array

Example 13.10 Let’s analyze a slightly more complicated loop. Figure 13.4
shows an algorithm that prints the lower left triangle of a two-dimensional array.

Once again, we analyze the inner loop first. The only difference compared
to the previous example, is that the inner loop repeats i times instead of n times.
This implies means that the running time of the inner loop varies with i. In fact,
the running time of the inner loop is Θ(i). This has the important consequence
that we cannot simply multiply the running time of the inner loop by the number
of times the outer loop repeats. Instead, we need to add the running time of all
the executions of the inner loop.

Here’s how we can do this. Let Tinner(i) be the running time of the inner loop.
Since the operations that manage the outer loop run in constant time, we have
that

Touter(n) = Θ

�

n−1
∑

i=0

Tinner(i)

�

Now, since Tinner(i) = Θ(i), there is a constant b such that the running time
of the inner loop is bounded above by bi. (Once again, we are being informal
by ignoring the fact that this upper bound holds only when i is large enough.)
Therefore,

n−1
∑

i=0

Tinner(i)≤
n−1
∑

i=0

bi = b
n−1
∑

i=0

i

326 CHAPTER 13. ANALYSIS OF ALGORITHMS

if (n < 10)
sort using simple sorting algorithm

else
sort using fast sorting algorithm

Figure 13.5: A hybrid sorting algorithm

We can then use the well-known formula 1+ 2+ · · ·+ k = k(k+ 1)/2:

b
n−1
∑

i=0

i = b
(n− 1)n

2
=

b
2

n2 −
b
2

n

Therefore,
n−1
∑

i=0

Tinner(i)≤
b
2

n2 −
b
2

n

A similar argument shows that this sum is also bounded below by a quadratic
function. Therefore, the running time of the outer loop is Θ(n2). ut

Example 13.11 Later in these notes, we will learn that there are simple sorting
algorithms that run in time Θ(n2) and more complex sorting algorithms that run
much faster, in time Θ(n log n). On small inputs, however, the simple sorting
algorithms often run faster than the more complex ones. Figure 13.5 shows a
hybrid sorting algorithm that takes advantage of that fact.

Now, what is the overall running time of this algorithm, Θ(n2) or Θ(n log n)?
The important thing to remember is that the asymptotic running time of an
algorithm is determined by its running time on large inputs. The fast sorting
algorithm is used for all n ≥ 10. Therefore, the asymptotic running time of
the hybrid algorithm is the running time of the fast sorting algorithm, which is
Θ(n log n). ut

13.6. BASIC STRATEGIES 327

We end this section with two additional properties of asymptotic equivalence:

Property 13.12 (Reflexivity) Every function is asymptotically equivalent to itself.
That is, every function f (n) is Θ(f (n)).

Property 13.13 (Symmetry) If f (n) is Θ(g(n)), then g(n) is Θ(f (n)).

When a relation is reflexive, symmetric and transitive, as is the case with
asymptotic equivalence, we say that it is an equivalence relation. This important
mathematical concept is normally studied in a course on discrete mathematics
or in a course on mathematics for computer science.4

Exercises

13.6.1. What is the (asymptotic) running time of each of the following algo-
rithms, as a function of n? Don’t forget to simplify and use the Θ notation.
Justify your answers.

a) for i = 1 to n
for j = 1 to 2n+1

print ’∗’

b) for i = 1 to 10
for j = 1 to n

print ’∗’

c) for i = 1 to n
for j = i to i+5

print ’∗’

4At Clarkson, this is MA211 Foundations.

328 CHAPTER 13. ANALYSIS OF ALGORITHMS

A
if (n < 100)

B
else

for j = 1 to n
C

Figure 13.6: Algorithm for Exercise 13.6.2

d) for i = 1 to n
for j = i to n

print ’∗’

e) for i = 1 to n
for j = 1 to 2∗i+1

print ’∗’

f) for i = 1 to n∗n
for j = 1 to i

print ’∗’

13.6.2. Consider the algorithm shown in Figure 13.6. Let TA(n), TB(n) and
TC(n) denote the running time of algorithms A, B and C , respectively.
What is the running time of this algorithm, as a function of n, under each
of the following sets of assumptions? Don’t forget to simplify and use the
Θ notation. Justify your answers.

a) TA(n) = Θ(n), TB(n) = Θ(n2) and TC(n) = Θ(log n).

b) TA(n) = Θ(n2), TB(n) = Θ(n2) and TC(n) = Θ(log n).

13.7. WORST-CASE AND AVERAGE-CASE ANALYSIS 329

for i = 0 to n−1
if (a[i] == x) return i

return −1

Figure 13.7: A sequential search of an array

c) TA(n) = Θ(n2), TB(n) = Θ(n3) and TC(n) = Θ(log n).

13.6.3. Consider the class of vectors we implemented earlier in these notes.
Analyze the running time of the various operations. For each function,
clearly identify what the input size is. For example, the input size of the
assignment operator is the total size of the receiver and argument.

13.7 Worst-Case and Average-Case Analysis

Consider the sequential search algorithm shown in Figure 13.7. What is the
running time of this algorithm? The accurate answer is that it depends on the
location of the first occurrence of x in the array.

We can talk of at least three different running times for a given algorithm.
All are functions of the input size. The best-case running time is the minimum
running time required on inputs of size n. In the case of the sequential search
algorithm, the best case occurs when x is the first element of the array. In that
case, the running time is constant.

The worst-case running time is the maximum running time required on inputs
of size n. In our example, the worst case occurs when x is not found. In that
case, the running time is linear in n.

The average-case running time is the average running time required on inputs
of size n. This running time is usually more difficult to determine, in part because

330 CHAPTER 13. ANALYSIS OF ALGORITHMS

it requires knowing how likely each input of size n is. For example, for the
sequential search, how likely is it that x will not be found? Given that it is
found, how likely is it that it will be found in each of the possible positions?

In this example, one possible approach is to determine the average-case run-
ning time for the two separate cases of a successful and an unsuccessful search.
If the search is unsuccessful, the running time will always be the same, so the
average and worst-case running times are the same: Θ(n).

In the case of a successful search, a common approach when lacking any
more precise knowledge of the particular application we have in mind, is to
assume that each location is equally likely. It is easy to see that the running time
of the search is Θ(k), where k is the index of the first occurrence of x. As usual,
there is a constant n such that this running time is at most bk. An upper bound
on the average running time can then be obtained by taking the average over all
possible positions k:

1
n

n−1
∑

k=0

bk =
b
n

n−1
∑

k=0

k =
b
n
(n− 1)n

2
= b

n− 1
2

A similar argument also gives a linear lower bound. Therefore, the average
running time of a successful search is Θ(n).

In general, the best-case running time is not very useful. The worst-case
running time is much more useful and has the advantage of giving us a guarantee
because it is an upper bound on the running time required for all inputs (that are
large enough). A possible disadvantage of the worst-case running time is that
this upper bound may be much larger than the running time required by most
inputs. In other words, the worst-case running time can be overly pessimistic.

An example of this occurs with the quicksort algorithm, one of the fast sort-
ing algorithms we will study later in these notes. This algorithm has a worst-case

13.7. WORST-CASE AND AVERAGE-CASE ANALYSIS 331

running time of Θ(n2) while the mergesort algorithm, another fast sorting algo-
rithm, has a Θ(n log n) worst-case running time. This might indicate that quick-
sort is much slower than mergesort. However, in practice, quicksort usually runs
faster than mergesort.

This apparent contradiction can be explained in part by the fact that the
average-case running time of quicksort is Θ(n log n), just like the worst-case
running time of mergesort. And the fact that quicksort tends to run faster than
mergesort in practice, probably indicates that the inputs that cause quicksort to
take quadratic time occur only rarely.

This illustrates how the average-case running time can be more realistic than
the worst-case running time. However, as we said earlier, the average-case run-
ning time can be more difficult to determine because it requires knowledge of the
probability distribution of the inputs. In addition, average-case analysis usually
requires additional calculations. This was the case with the sequential search al-
gorithm, although the calculations there were still easy. The average-case anal-
ysis of quicksort, on the other hand, is significantly more complicated that its
worst-case analysis.5 In the rest of these notes, we will usually focus on the
worst-case running time of algorithms.

One final comment. In cases where even the worst-case analysis of an algo-
rithm proves difficult, it is possible to get an estimate of its asymptotic running
time by testing the algorithm on randomly generated inputs of various sizes
and seeing what kind of function best fits the data. But note that this gives an
estimate of the average-case running time, since there is no guarantee that ran-
domly generated inputs will include the worst-case ones. This kind of “empirical
analysis” can be especially useful if the average-case analysis is difficult and we
suspect that the worst-case running time may be too pessimistic.

5We will do the worst-case analysis of quicksort later in these notes. At Clarkson, the average-
case analysis is usually done in the course CS344 Algorithms and Data Structures.

332 CHAPTER 13. ANALYSIS OF ALGORITHMS

Study Questions

13.7.1. What are the best-case, worst-case and average-case running times of
an algorithm?

13.7.2. What is an advantage and a disadvantage of the worst-case running time
compared to the average-case running time?

Exercises

13.7.3. Consider the class of vectors we implemented earlier in these notes.
Determine the average-case running times of the various operations. For
each operation, clearly identify what the input size is. For example, the
input size of the assignment operator is the total size of the receiver and
argument. In addition, state your assumptions about the distribution of
inputs.

13.8 The Binary Search Algorithm

It is fairly obvious that searching a collection of data for a particular element,
or for an element that satisfies a particular property, is a frequent operation. In
this section, we will learn that under certain conditions, it is possible to search
very efficiently by using an algorithm called binary search. We will also analyze
the running time of this algorithm.

The simplest way of searching a sequence such as an array or a vector is to
scan it from one end to the other, examining elements one by one. This is the
sequential search we analyzed in the previous section. We found that its running
time is linear in the length of the sequence.

13.8. THE BINARY SEARCH ALGORITHM 333

Input: a sorted sequence s, an element e

while (s contains more than one element) {
locate middle of s
if (e < middle element of s)

s = left half of s
else

s = right half of s
}
compare e to only element in s

Figure 13.8: The binary search algorithm

If the sequence happens to be ordered, then the search can be done more
quickly. For example, consider an array of integers sorted in increasing order.
When looking for a particular integer, we can stop searching as soon as we find
the integer we are looking for or an integer that is larger that the integer we are
looking for. The running time of this modified sequential search is still linear
but we can expect unsuccessful searches to be 50% faster, on average.

A much more dramatic improvement in the running time can be obtained
for sorted sequences that provide constant-time access to their elements, such
as arrays and vectors. The idea is to go straight to the middle of the sequence
and compare the element we are looking for with the middle element of the
sequence. Because the sequence is sorted, this comparison tells us if the element
we are looking for should be located in the first or second half of the sequence.
We then only need to search that half.

This searching algorithm is called a binary search. The algorithm is de-
scribed in Figure 13.8. Figure 13.9 shows a sample run of the algorithm on a
sequence of integers. The middle element is taken to be the one at the middle

334 CHAPTER 13. ANALYSIS OF ALGORITHMS

e = 25
s = [12 16 25 37 38 42 60 73] middle = 38

[12 16 25 37] 25
[25 37] 37
[25]

Found!

Figure 13.9: A run of the binary search algorithm

or to the immediate right of the middle.
Figure 13.10 shows a generic implementation of the binary search algorithm

for arrays.
We now analyze the running time of the binary search algorithm under the

following two assumptions:

1. The middle element of the sequence can be accessed in constant time.

2. Elements can be compared in constant time.

For example, these assumptions are satisfied in the case of arrays and vectors
that contain either integers or small strings.

Let T (n) be the running time of the binary search algorithm on a sorted
sequence of size n. To keep things simple, we’ll assume that n is a power of 2.

Consider the pseudocode shown in Figure 13.8. Since the step that follows
the loop runs in constant time, the running time of the algorithm will clearly
be dominated by the loop. Each iteration of the loop runs in constant time.
Therefore, T (n) = Θ(r) where r is the number of iterations of the loop.

We now determine what r is. At every iteration of the loop, the size of the
sequence decreases by half. Since we are assuming that n is a power of 2, sup-
pose that n = 2k. After i iterations, the size of the sequence is n/2i = 2k−i. The

13.8. THE BINARY SEARCH ALGORITHM 335

template <class T>
int binary_search(const T a[], int start, int stop,

const T & e)
// Performs a binary search in a for e. Returns the
// index of e in the range [start,stop). Returns −1 if
// e is not found that range.
//
// PRECONDITION: The indices are valid and the
// elements in the range [start,stop) are sorted in
// increasing order.
//
// ASSUMPTION ON TEMPLATE ARGUMENT: Values of type T
// can be compared by using the < operator.
{

while (stop − start >= 2) {
int middle = (start + stop) / 2;
if (e < a[middle])

stop = middle;
else

start = middle;
}
if (stop − start == 1) {

if (e == a[start])
return start;

else
return −1;

}
else { // stop − start <= 0

return −1;
}

}

Figure 13.10: An implementation of binary search for arrays

336 CHAPTER 13. ANALYSIS OF ALGORITHMS

loop stops when the size reaches 1. Therefore, r must satisfy 2k−r = 1, which
implies that r = k. Of course, k = log n, so that T (n) = Θ(log n).

Note that our analysis of the binary search algorithm relies critically on the
fact that the middle element of the sequence can be accessed in constant time.
The binary search algorithm can also be used on other sorted sequences but, in
that case, the running time may not be logarithmic. (An exercise asks you to
explore this issue.)

Exercises

13.8.1. Run the binary search sort algorithm on an array containing the follow-
ing elements:

11 27 28 30 36 42 58 65

Search for elements 42 and 30. Illustrate each run of the algorithm as
was done in Figure 13.9.

13.8.2. Suppose that computing the location of the middle element of a se-
quence takes time linear in the number of elements in the range currently
being searched. (This is the case with linked lists.) Show that the running
time of the binary search algorithm is linear in this case.

13.8.3. Suppose that an array contains multiple copies of an element being
searched for. As described in this section, the binary search algorithm will
find the last occurrence of that element. Modify the algorithm so it finds
the first occurrence. Verify your work by revising the implementation of
the algorithm and testing it.

Chapter 14

Recursion

In this chapter, we will learn about recursion, a technique that greatly simplifies
the design and implementation of many algorithms, including the fast sorting
algorithms we will learn later in these notes.

14.1 The Technique

Recursion is a technique for designing algorithms. We will see examples of the
usefulness of recursion when we study sorting algorithms later in these notes.
For now, however, we introduce recursion using simple examples where recur-
sion is neither needed nor a particularly good idea. These examples are only
meant to illustrate the technique.

Consider the problem of printing a line containing n copies of a given char-
acter c. An algorithm for this problem can be designed very simply by putting
the statement cout << c in a loop that executes n times. A possible imple-
mentation is shown in Figure 14.1.

An alternative algorithm can be designed as follows. First, print one c. Then

337

338 CHAPTER 14. RECURSION

void print1(int n, char c)
{

for (int i = 0; i < n; ++i) {
cout << c;

}
cout << endl;

}

Figure 14.1: A simple iterative algorithm

ask, what is left to do? The answer is, to print a line containing n− 1 copies of
c. And here is the central idea of recursion: this subtask can be performed by
using the algorithm that is being designed as if it was already available:

cout << c;
print(n−1, c);

The function call print(n−1, c) is recursive because it occurs in print itself.
This recursive call does not create a trivial infinite loop because the function is
not being called with the same arguments.

However, as is, this recursive algorithm won’t work: it will just keep on call-
ing itself. What we need is a base case, a case where recursion is not used. We
also need to make sure that the base case will eventually be reached. The al-
gorithm in Figure 14.2 achieves both these objectives. The base case is when
n≤ 0. In that case, we print an empty line.

In general, the correctness of a recursive algorithm can be established by
verifying that it satisfies the following three properties:

1. The algorithm has at least one base case, one where the problem is solved
directly, without a recursive call.

14.1. THE TECHNIQUE 339

void print2(int n, char c)
{

if (n > 0) {
cout << c;
print2(n−1, c);

}
else {

cout << endl;
}

}

Figure 14.2: A recursive algorithm

2. Every recursive call gets closer to a base case, in such a way that a base
case will eventually be reached.

3. The algorithm works when you assume that the recursive calls work.

The first two properties guarantee that the algorithm will eventually termi-
nate. The third property, on the other hand, guarantees that the algorithm does
what it is supposed to do.

This last property is a little mysterious. In the case of print, it means the
following:

print(n, c) correctly prints a line containing n copies of c when
you assume that print(n−1, c) correctly prints a line containing
n− 1 copies of c.

In our case, this statement is true. But why does it guarantee that
print(n, c) works for every possible value n? The key is to consider what
the property says for n, n− 1, all the way down to 1:

340 CHAPTER 14. RECURSION

print(n, c) works if print(n−1, c) works
print(n−1, c) works if print(n−2, c) works
print(n−2, c) works if print(n−3, c) works
. . .
print(2, c) works if print(1, c) works
print(1, c) works if print(0, c) works

Now, go through these statements in reverse order. We know that
print(0, c) works because the base case of the algorithm correctly prints
a line containing 0 copies of c. This implies that print(1, c) works. Con-
tinuing in this way, we get the following:

print(1, c) works because print(0, c) works
print(2, c) works because print(1, c) works
. . .
print(n−2, c) works because print(n−3, c) works
print(n−1, c) works because print(n−2, c) works
print(n, c) works because print(n−1, c) works

Therefore, print(n, c) works.
This type of argument can be expressed more formally by using the Principle

of Mathematical Induction.1

It is important to realize that each recursive call executes independently from
the others. In particular, each recursive call has its own arguments and its own
set of local variables. For example, the execution of print(2, ’∗’) can be
illustrated as in Figure 14.3.

We end this section with some additional examples of recursive algorithms.
The first one displays the contents of an array. It is shown in Figure 14.4, in

1At Clarkson, this proof technique is covered in the course MA211 Foundations.

14.1. THE TECHNIQUE 341

print(2,’∗’)
−−−−−−−−−−−−
n = 2
c = ’∗’

print(2,’∗’) −−> print(1,’∗’)
−−−−−−−−−−−− −−−−−−−−−−−−
n = 2 n = 1
c = ’∗’ c = ’∗’

print(2,’∗’) −−> print(1,’∗’) −−> print(0,’∗’)
−−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−−−−
n = 2 n = 1 n = 0
c = ’∗’ c = ’∗’ c = ’∗’

print(2,’∗’) −−> print(1,’∗’) −−> print(0,’∗’)
−−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−−−−
n = 2 n = 1 n = 0
c = ’∗’ c = ’∗’ c = ’∗’

(return)
print(2,’∗’) −−> print(1,’∗’)
−−−−−−−−−−−− −−−−−−−−−−−−
n = 2 n = 1
c = ’∗’ c = ’∗’

(return)
print(2,’∗’)
−−−−−−−−−−−−
n = 2
c = ’∗’
(return)

Figure 14.3: A sample run of the print algorithm

342 CHAPTER 14. RECURSION

if the array is not empty
display the first element of the array
display the rest of the array (recursively)

else
do nothing

Figure 14.4: Recursive algorithm that displays the contents of an array

pseudocode, and implemented in Figure 14.5. The second algorithm computes
the sum of the elements in an array of numbers. It is shown in Figures 14.6
and 14.7. The third algorithm displays the contents of an array in reverse. It is
shown in Figures 14.8 and 14.9.

Our last example is the binary search algorithm. Earlier in these notes, we
described this algorithm as a loop (see Figure 13.8). But the algorithm can also
be described recursively, as shown in Figure 14.10. The idea is that after having
compared e to the middle of s, what is left to do is search one of the halves of
s. That problem can be solved recursively. An implementation of the recursive
binary search for arrays is shown in Figure 14.11.

Study Questions

14.1.1. What are the three properties of a correct recursive algorithm?

Exercises

14.1.2. Verify that the recursive algorithms shown in Figures 14.4, 14.6, 14.8
and 14.10 satisfy the three properties of a correct recursive algorithm.

14.1.3. Write a recursive function that computes the number of occurrences of

14.1. THE TECHNIQUE 343

template <class T>
void display(const T a[], int start, int stop)
// Displays the elements of a in the range [start,
// stop). Elements are separated by one blank space.
//
// PRECONDITION: The indices are valid indices in a.
//
// ASSUMPTION ON TEMPLATE ARGUMENT: Values of type T
// can be displayed using the << operator.
{

if (start < stop) {
cout << a[start] << ’ ’;
display(a, start+1, stop);

}
// if start >= stop, do nothing

}

Figure 14.5: Implementation of the recursive display algorithm

if the array is not empty
compute the sum of all the elements except the

first one (recursively)
add the first element to that sum
return the sum

else
return 0

Figure 14.6: Recursive algorithm that adds the elements of an array of numbers

344 CHAPTER 14. RECURSION

template <class T>
T sum(const T a[], int start, int stop)
// Adds the elements of a in the range [start, stop).
// The sum is returned.
//
// PRECONDITION: The indices are valid indices in a.
//
// ASSUMPTION ON TEMPLATE ARGUMENT: Values of type T
// can be added using the + operator and 0 can be
// converted to a value of type T.
{

if (start < stop)
return a[start] + sum(a, start+1, stop);

else // start >= stop
return 0;

}

Figure 14.7: Implementation of the recursive sum algorithm

if the array if not empty
separate the first element of the array
display all the elements in reverse, except the

first one (recursively)
display the first element of the array

else
do nothing

Figure 14.8: Recursive algorithm that displays the contents of an array in reverse

14.1. THE TECHNIQUE 345

template <class T>
void display_reverse(const T a[], int start, int stop)
// Displays, in reverse order, the elements of a in the
// range [start,stop). Elements are separated by one
// blank space.
//
// PRECONDITION: The indices are valid indices in a.
//
// ASSUMPTION ON TEMPLATE ARGUMENT: Values of type T
// can be displayed using the << operator.
{

if (start < stop) {
display_reverse(a, start+1, stop);
cout << a[start] << ’ ’;

}
// if start >= stop, do nothing

}

Figure 14.9: Implementation of the recursive reverse display algorithm

346 CHAPTER 14. RECURSION

Input: a sorted sequence s, an element e

if (s contains more than one element) {
locate middle of s
if (e < middle element of s)

search left half of s
else

search right half of s
}
else {

compare x to only element in s
}

Figure 14.10: Recursive version of the binary search algorithm

a given element in an array. The function takes as arguments the array,
a start index, a stop index and an element. The function returns the
number of times the element occurs in the range [start,stop).

14.1.4. Write a recursive function that finds the maximum element in a
nonempty array. The function takes as arguments the array, a start index
and a stop index. The function returns the maximum value that occurs
in the range [start,stop).

14.1.5. Modify the function of the previous exercise so that it returns the index
of the first occurrence of the maximum value.

14.1.6. Write a recursive function that takes as argument an integer n and prints
the numbers n, n− 1, . . . , 3, 2, 1. The function should do nothing if n< 1.

14.1.7. Repeat the previous question but this time print the numbers in increas-

14.1. THE TECHNIQUE 347

template <class T>
int binary_search(const T a[], int start, int stop,

const T & e)
// Performs a binary search in a for e. Returns the
// index of e in the range [start, stop). Returns −1
// if e is not found that range.
//
// PRECONDITION: The indices are valid and the
// elements in the range [start,stop) are sorted in
// increasing order.
//
// ASSUMPTION ON TEMPLATE ARGUMENT: Values of type T
// can be compared by using the < operator.
{

if (stop − start >= 2) {
int middle = (start + stop) / 2;
if (e < a[middle])

return binary_search(a, start, middle, e);
else

return binary_search(a, middle, stop, e);
}
if (stop − start == 1) {

if (e == a[start])
return start;

else
return −1;

}
else { // stop − start <= 0

return −1;
}

}

Figure 14.11: An implementation of the recursive binary search for arrays

348 CHAPTER 14. RECURSION

ing order.

14.1.8. Repeat again, this time printing n, n − 1, . . . , 3, 2, 1, 2, 3, . . . , n − 1, n.
Write a single function.

14.2 When to Use Recursion

First, why use recursion? The main advantage of recursive algorithms is that
they can be simpler than non-recursive algorithms that solve the same problem.
This means that recursive algorithms can be easier to find and design, as well
as easier to understand, implement and modify. We will soon study efficient
sorting algorithms and these will be good examples where recursion makes the
algorithms simpler and easier to design.

However, it is not always a good idea to use recursion. The main disadvan-
tage of recursive algorithms is that they can generate of lot of function calls.
Function calls take more time than most other operations. But for most recur-
sive functions, the additional time taken by the recursive calls is not very signifi-
cant. What is usually more important is that a recursive function always uses an
amount of memory space at least proportional to the number of recursive calls.
This should be clear from the sample run shown in Figure 14.3.

In general, the memory requirements of recursive functions lead to the fol-
lowing guidelines:

1. Try to avoid recursion if the number of recursive calls can be large.

2. Don’t use recursion if the number of recursive calls can be large and there
is a simple loop that can solve the problem.

What “large” means depends on the context and the size of the input. But, typi-
cally, anything at least linear in the input size is considered large while anything

14.2. WHEN TO USE RECURSION 349

logarithmic in the input size is considered small.

To summarize, you don’t want to use recursion if you already have a simple,
efficient non-recursive algorithm that solves the problem. You want to use re-
cursion to design an algorithm when you suspect, or hope, that it will be easier
that way and that you may get a simpler algorithm. But then, once you have
designed the recursive algorithm, you need to check that it doesn’t use much
more memory than necessary.

In light of these comments, the first four recursive algorithms of the previous
section (print, display, sum, display_reverse) are actually examples
where recursion should not be used because we have simple loops that can solve
these problems using only a constant amount of memory. The case of binary
search is not as clear-cut. Some would argue that the recursive version is more
natural and that the extra logarithmic space shouldn’t be a problem, even for
very large input sizes.

Note that there are programming languages in which recursion is the normal
mechanism for creating repetition because those languages don’t have general-
purpose loops. Examples of such languages are Scheme and Prolog.2

Study Questions

14.2.1. What is the main advantage and the main disadvantage of recursive
algorithms?

2At Clarkson, these languages are typically studied in the course CS341 Programming Lan-
guages.

350 CHAPTER 14. RECURSION

Exercises

14.2.2. Which of the algorithms you wrote for the exercises of the previous sec-
tion should have not been designed recursively?

14.3 Tail Recursion

We know that the minimum amount of memory used by a recursive function is
at least proportional to the number of recursive calls it makes. If that number is
large, the algorithm will use a lot of space. In such cases, we probably want to
look for a non-recursive algorithm.

Sometimes it is fairly easy to directly transform a recursive algorithm into
a non-recursive one. A recursive function is said to be tail recursive if every
time it runs, at most one recursive call is made and that call is the very last
action that the function takes. Among the recursive functions we have seen as
examples, print, display and binary_search are tail recursive while sum
and display_reverse are not.

A tail recursive function can be transformed into a loop by following these
three general steps:

1. Turn the recursive case of the function into the body of a loop that executes
until the base case is reached.

2. Replace the recursive call by statements that update the arguments of the
function.

3. Place the base case so it is executed after the loop terminates.

For example, applying these steps to the recursive print function produces the
iterative version shown in Figure 14.12. Note that this loop uses a constant

14.3. TAIL RECURSION 351

void print(int n, char c)
{

while (n > 0) {
cout << c;
−−n;

}
cout << endl;

}

Figure 14.12: A version of print with the tail recursion removed

amount of memory while the recursive version of print uses an amount that’s
linear in n.

Some compilers are able to make tail recursive functions execute efficiently,
as if they had been transformed into loops. In general, whenever a function
calls another one at the very end of its execution, any memory space used by
the calling function can be deallocated immediately because the calling function
has nothing left to do. Some compilers are able to compile these “last calls” in
this way. This is called last-call optimization.

Study Questions

14.3.1. What is a tail recursive algorithm?

14.3.2. How can a tail recursive algorithm be transformed into a loop?

Exercises

14.3.3. Transform the recursive display and binary_search functions into
loops by using the above three steps.

352 CHAPTER 14. RECURSION

14.3.4. Among the functions you wrote for the exercises of the first section of
this chapter, which ones are tail recursive? Transform them into loops by
using the above three steps.

Chapter 15

Sorting

Two of the most frequent operations performed on a collection of data are to
search the collection for a particular element and to sort the data by arranging
the elements in some order. And these two operations are related: as we have al-
ready seen, sorted data can be searched much more quickly by using algorithms
such as the binary search. In this chapter, we will learn sorting algorithms, in-
cluding two very efficient ones: mergesort and quicksort.

15.1 Selection Sort

Consider the problem of rearranging the elements of an array so that they are
in increasing order. This is called sorting. Sorting data is a frequent and very
useful operation. As we saw in the last section, sorted data can be searched more
efficiently. We may also need to sort data for other purposes. In the following
sections, we will learn and analyze four different sorting algorithms. The first
two are simple but inefficient. The last two are more complicated but much
more efficient. They are also good examples of recursive algorithms.

353

354 CHAPTER 15. SORTING

input: an array a and two indices start and stop

if ([start,stop) contains more than one element) {
i_max = index of maximum element in [start,stop)
swap a[i_max] and a[stop−1]
sort [start, stop−1)

}

Figure 15.1: The selection sort algorithm

[60 12 37 42 25 38 16]
[16 12 37 42 25 38] 60
[12 16 25 37 38 42] 60
[12 16 25 37 38 42 60]

Figure 15.2: A run of the selection sort algorithm (top level of recursion)

Our first sorting algorithm is called selection sort. The idea is simple: find
the largest element of the array and move it to the last position. Then repeat for
the rest of the array. The algorithm is shown in Figure 15.1. A sample run of the
algorithm is illustrated in Figure 15.2. The first line shows the initial contents of
the array. The second line shows the result of the swap and the subarray that will
be recursively sorted. The third line shows the result of sorting that subarray.
The fourth line shows the final contents of the array.

Figure 15.3 illustrates the same run of selection sort but this time, the entire
recursion is shown, not just the top level. The first half of the lines shows the
contents of the array after each swap, before the recursive call. The second half
shows these arrays at the end of the recursive calls. The portion of the array
being sorted by the current recursive call is shown between the two brackets.

15.1. SELECTION SORT 355

[60 12 37 42 25 38 16]
[16 12 37 42 25 38] 60
[16 12 37 38 25] 42 60
[16 12 37 25] 38 42 60
[16 12 25] 37 38 42 60
[16 12] 25 37 38 42 60
[12] 16 25 37 38 42 60
[12] 16 25 37 38 42 60
[12 16] 25 37 38 42 60
[12 16 25] 37 38 42 60
[12 16 25 37] 38 42 60
[12 16 25 37 38] 42 60
[12 16 25 37 38 42] 60
[12 16 25 37 38 42 60]

Figure 15.3: A run of the selection sort algorithm (entire recursion)

356 CHAPTER 15. SORTING

input: an array a and two indices start and stop

while ([start,stop) contains more than one element) {
i_max = index of maximum element in [start,stop)
swap a[i_max] and a[stop−1]
−−stop

}

Figure 15.4: An iterative version of the selection sort algorithm

Since selection sort is tail recursive we can easily turn it into a more efficient
loop, as shown in Figure 15.4. An implementation of selection sort for arrays
is shown in Figure 15.5. Note the use of the STL generic algorithms swap and
max_element.

The analysis of selection sort is simple. Consider its recursive version. Let
T (n) be the time required for sorting an array of size n. We know that to find
the maximum element in an array of size n takes time linear in n. Therefore,

T (n) = T (n− 1) +Θ(n) (when n≥ 2)

T (1) = Θ(1)

These two equations together are called a recurrence relation because the
first equation expresses the value of T (n) in terms of the value of T on a smaller
argument. Recurrence relations are therefore similar to recursive algorithms
and, in fact, they come up naturally in the analysis of recursive algorithms.

What we need to do now is extract from the recurrence relation an equation
that no longer expresses T in terms of T . This is called solving the recurrence
relation.

This particular recurrence relation is very easy to solve. First, replace the

15.1. SELECTION SORT 357

template <class T>
void selection_sort(T a[], int start, int stop)
// Sorts elements in a in increasing order using the
// selection sort algorithm. Sorts elements in the
// range [start, stop). Sorts according to the <
// operator.
//
// PRECONDITION: The indices are valid and start occurs
// before stop.
//
// ASSUMPTION ON TEMPLATE ARGUMENT: Values of type T
// can be compared using the < operator.
{

while (stop − start > 1) {
std::swap(∗std::max_element(a + start,

a + stop),
a[stop − 1]);

−−stop;
}

}

Figure 15.5: An implementation of selection sort for arrays

358 CHAPTER 15. SORTING

asymptotics with actual functions:

T (n) ≤ T (n− 1) + bn (when n≥ 2)

T (1) = c

Then, note that the recurrence relation implies the following set of equations:

T (n) ≤ T (n− 1) + bn

T (n− 1) ≤ T (n− 2) + b(n− 1)
...

T (2) ≤ T (1) + b2

T (1) = c

Second, add of all these equations to get

T (n) ≤ c + b(2+ · · ·+ n)

= c + b
�

n(n+ 1)
2

− 1
�

This means that T (n) is bounded above by a quadratic function. A similar ar-
gument shows that T (n) is also bounded below by a quadratic function. This
implies that T (n) = Θ(n2).

Exercises

15.1.1. Run the selection sort algorithm on an array containing the following
elements:

12 37 25 60 16 42 38

15.2. INSERTION SORT 359

input: an array a and two indices start and stop

if ([start,stop) contains more than one element) {
sort [start, stop−1)
insert a[stop−1] into [start, stop−1)

}

Figure 15.6: The insertion sort algorithm

Show the top level of the recursion, as in Figure 15.2. Then show the
contents of the array at the beginning and end of every recursive call, as
in Figure 15.3.

15.2 Insertion Sort

In the recursive version of the selection sort algorithm, the recursive sorting of
the subarray is done at the end. What if we tried to do it at the beginning? After
the recursive call, we would only have to move the last element of the array to its
correct position. This gives us a sorting algorithm called insertion sort, which is
shown in Figure 15.6. Note that inserting a[stop−1] into [start,stop−1)
causes one of the elements of the subarray to overflow onto index stop−1.

Figure 15.7 illustrates a run of insertion sort. The first line shows the initial
contents of the array. The second line shows the subarray that will be recursively
sorted. The third line shows the result of sorting that subarray. The fourth line
shows the final contents of the array, after the insertion of the last element into
the sorted subarray.

Figure 15.8 illustrates the same run of insertion sort but this time, the entire
recursion is shown, not just the top level. The first half of the lines shows the

360 CHAPTER 15. SORTING

[60 12 37 42 25 38 16]
[60 12 37 42 25 38] 16
[12 25 37 38 42 60] 16
[12 16 25 37 38 42 60]

Figure 15.7: A run of the insertion sort algorithm (top level of recursion)

contents of the array at the beginning of every recursive call. The second half
shows these arrays at the end of the recursive calls. The portion of the array
being sorted by the current recursive call is shown between the two brackets.

The analysis of the running time of insertion sort is similar to but just a little
more complicated than that of selection sort. Once again, let T (n) be the time
required for sorting an array of size n. Besides the recursive call, the algorithm
needs to insert an element e into a sorted subarray of size n−1. One way to do
that is to scan the subarray from right to left looking for the correct location of
e. While we scan, we shift all the elements one position to the right. When we
finally find the correct location of e, there is room for it in the subarray and we
just copy it there.

The time required for the insertion depends on the location of e in the sorted
subarray. In the best case, e is larger than all the elements of the array and no
scanning and shifting is necessary. The best-case running time is constant. In
the worst case, e is smaller than all the elements of the array and the entire
array must be scanned and shifted. The worst-case running time is Θ(k), where
k is the size of the array.

Now, is there, for every n, an array that would cause all these insertions to
be the worst possible? The answer is yes: an array sorted in reverse. For this
particular, all the insertions will take time Θ(k).

Let T (n) be the running time of insertion sort on array of size n that’s sorted

15.2. INSERTION SORT 361

[60 12 37 42 25 38 16]
[60 12 37 42 25 38] 16
[60 12 37 42 25] 38 16
[60 12 37 42] 25 38 16
[60 12 37] 42 25 38 16
[60 12] 37 42 25 38 16
[60] 12 37 42 25 38 16
[60] 12 37 42 25 38 16
[12 60] 37 42 25 38 16
[12 37 60] 42 25 38 16
[12 37 42 60] 25 38 16
[12 25 37 42 60] 38 16
[12 25 37 38 42 60] 16
[12 16 25 37 38 42 60]

Figure 15.8: A run of the insertion sort algorithm (entire recursion)

362 CHAPTER 15. SORTING

in reverse. This is also the worst-case running time of insertion sort. Then,

T (n) = T (n− 1) +Θ(n) (when n≥ 2)

T (1) = Θ(1)

where the Θ(n) term is essentially the running time of the insertion. This recur-
rence relation is identical to the one for selection sort. So here too we get that
T (n) = Θ(n2).

What about the average-case running time? If each element of the original
array is chosen at random, then the same will be true for each of the subarrays
to be sorted. Therefore, each insertion will be performed on a random sorted
array. On average, the running time of these insertions is also Θ(k). Therefore,
the average-case running time of insertion sort is also Θ(n2).

The insertion sort algorithm is not tail recursive. So we cannot use the stan-
dard technique to easily turn the recursion into a loop. But we can design an
iterative version of insertion sort by focusing on the second half of the recursion,
that is, on the work that is done after we return from the recursive calls. Essen-
tially, this means writing a loop that performs insertions as in the second half of
Figure 15.8. The details are left as an exercise.

Exercises

15.2.1. Run the insertion sort algorithm on an array containing the following
elements:

12 37 25 60 16 42 38

Show the top level of the recursion, as in Figure 15.7. Then show the
contents of the array at the beginning and end of every recursive call, as

15.3. MERGESORT 363

in Figure 15.8.

15.2.2. What is the best-case running time of insertion sort? Clearly identify a
best-case input.

15.2.3. Implement the recursive version of the insertion sort algorithm.

15.2.4. Implement an iterative version of the insertion sort algorithm.

15.3 Mergesort

It is possible to design a faster sorting algorithm by considering that insertion
sort, like a recursive version of the sequential search algorithm, recurses on a
subarray that’s only one smaller than the initial array. The binary search algo-
rithm, on the other hand, divides the array in half. This reduces the number
of levels in the recursion to Θ(log n) and this reduction is the key factor in the
speed of the algorithm. If we could design a sorting algorithm that divides the
array in half, the depth of the recursion would be Θ(log n) and this may allow
the algorithm to run in time Θ(n log n).

Figure 15.9 presents such an algorithm, the mergesort algorithm. After re-
cursively sorting the two halves of the array, the algorithm merges these sorted
arrays back into a single sorted array. Note that this is our first example of a
recursive algorithm that makes two recursive calls.

Figure 15.10 illustrates a run of mergesort. The first line shows the initial
contents of the array. The second line shows the two subarrays that will be
recursively sorted. The third line shows the result of sorting these subarrays.
The fourth line shows the final contents of the array, after the merging of the
two sorted subarrays.

364 CHAPTER 15. SORTING

input: an array

if (array contains more than one element) {
sort the first half of array
sort the second half of array
merge the two sorted halves

}

Figure 15.9: The mergesort algorithm

[60 12 37 42 25 38 16]
[60 12 37 42] [25 38 16]
[12 37 42 60] [16 25 38]
[12 16 25 37 38 42 60]

Figure 15.10: A run of the mergesort algorithm (top level of recursion)

15.3. MERGESORT 365

[60 12 37 42 25 38 16]
[60 12 37 42] [25 38 16]
[60 12] [37 42] [25 38] [16]
[60] [12] [37] [42] [25] [38] [16]
[12 60] [37 42] [25 38] [16]
[12 37 42 60] [16 25 38]
[12 16 25 37 38 42 60]

Figure 15.11: A run of the mergesort algorithm (entire recursion)

Figure 15.11 illustrates that same run of mergesort but it shows the entire
recursion, not just the top level. The first half of the lines show the initial con-
tents of the array at each level of the recursion, as if all the recursive calls at that
level were executed simultaneously. The second half of Figure 15.11 shows, for
each level of the recursion, the final contents of the array, after the merge step.

It is possible to implement mergesort non-recursively, but this requires more
effort and the resulting algorithm is more complicated and no more efficient
than the recursive version. Therefore, mergesort is an excellent example of the
usefulness of recursion.

The performance of mergesort relies on an efficient merging algorithm. Two
sorted arrays can be merged by repeatedly choosing the smallest among the
leading elements of both subarrays. A run of this algorithm is illustrated in
Figure 15.12. It is clear that the running time of this algorithm is Θ(s), where
s is the total size of the arrays to be merged. Note that the running time of the
merge algorithm is the same for all inputs of size s.

An implementation of mergesort for arrays is shown in Figure 15.13. This im-
plementation uses the STL generic algorithm inplace_merge. Figures 15.14
and 15.15 show a possible implementation of the merging algorithm.

366 CHAPTER 15. SORTING

First array Second array Resulting array
[12 37 42 60] [16 25 38] []

[37 42 60] [16 25 38] [12]
[37 42 60] [25 38] [12 16]
[37 42 60] [38] [12 16 25]

[42 60] [38] [12 16 25 37]
[42 60] [] [12 16 25 37 38]

[] [] [12 16 25 37 38 42 60]

Figure 15.12: A run of the merging algorithm

We now analyze the running time of mergesort. Let T (n) be the running time
of the algorithm on arrays of size n. As we did for binary search, to simplify the
calculations, we are going to assume that n is a power of 2. The general case
can be dealt with just like we did for binary search.

When sorting a array of size n = 2k, mergesort sorts two arrays of size 2k−1

and then merges them. As we mentioned before, the merging can be done in
linear time. Therefore,

T (2k) = 2T (2k−1) +Θ(2k) (when k ≥ 1)

T (1) = Θ(1)

To solve this recurrence relation, we start by replacing the asymptotics by
actual functions:

T (2k) ≤ 2T (2k−1) + b2k (when k ≥ 1)

T (1) = c

15.3. MERGESORT 367

template <class T>
void mergesort(T a[], int start, int stop)
// Sorts elements in a in increasing order using the
// mergesort algorithm. Sorts elements in the range
// [start,stop). Sorts according to the < operator.
//
// PRECONDITION: The indices are valid and start occurs
// before stop.
//
// ASSUMPTION ON TEMPLATE ARGUMENT: Values of type T
// can be compared using the < operator.
{

if (stop − start > 1) {
int middle = (start + stop) / 2;

mergesort(a, start, middle);
mergesort(a, middle, stop);

std::inplace_merge(a + start, a + middle,
a + stop);

}
}

Figure 15.13: An implementation of mergesort for arrays

368 CHAPTER 15. SORTING

template <class T>
void merge(T a[], int start, int middle, int stop)
// Merges two sorted, consecutive subarrays. Runs in
// linear time.
//
// PRECONDITION: The indices are valid and occur in
// the following order: start, middle, stop. The
// elements in each of the ranges [start,middle) and
// [middle,stop) are sorted in increasing order.
// There is enough memory available for allocating
// stop − start values of type T.
//
// POSTCONDITION: The elements in the range [start,
// stop) are sorted in increasing order according to
// the < operator.
//
// ASSUMPTION ON TEMPLATE ARGUMENT: Values of type T
// can be compared using the < operator.
{

int i1 = start; // index of next element to be
// considered in first subarray

int i2 = middle; // same for second subarray

T ∗ result = new T[stop − start];
// temporary array to store merged elements

int j = 0; // index of next available position in
// result

...
}

Figure 15.14: An implementation of the merging algorithm (part 1 of 2)

15.3. MERGESORT 369

template <class T>
void merge(T a[], int start, int middle, int stop)
{

...

while (i1 < middle && i2 < stop) {
if (a[i1] < a[i2]) {

result[j] = a[i1];
++i1;

} else {
result[j] = a[i2];
++i2;

}
++j;

}
// At this point, either i1 == middle or i2 ==
// stop, which means that at least one of the two
// subarrays has been completely copied to result.

// Copy the rest of the first subarray to result.
std::copy(a + i1, a + middle, result + j);

// Copy the rest of the second subarray to result.
std::copy(a + i2, a + stop, result + j);

// Copy result to original array
std::copy(result, result + (stop − start),

a + start);

delete [] result;
}

Figure 15.15: An implementation of the merging algorithm (part 2 of 2)

370 CHAPTER 15. SORTING

We then consider the following series of equations:

T (2k) ≤ 2T (2k−1) + b2k

T (2k−1) ≤ 2T (2k−2) + b2k−1

...

T (2) ≤ 2T (1) + b2

T (1) = c

But if we add these we won’t get all the cancellations we got before because the
T values on the right have a constant factor of 2.

To solve this problem, we multiply each equation by an appropriate constant:

T (2k) ≤ 2T (2k−1) + b2k

2T (2k−1) ≤ 22T (2k−2) + b2k

22T (2k−1) ≤ 23T (2k−2) + b2k

...

2k−1T (2) ≤ 2kT (1) + b2k

2kT (1) = c2k

Now, if we add all of these, we get

T (2k)≤ kb2k + c2k

Since n= 2k, we have that k = log n, so that

T (n)≤ bn log n+ cn

15.3. MERGESORT 371

A similar argument shows that

T (n)≥ an log n+ cn

Therefore, since the n log n terms dominate, we get that T (n) = Θ(n log n).
Note that what each equation

2i T (2k−i)≤ 2i T (2k−i−1) + b2k

represents, for i = 0, . . . , k, is the total running time of all the recursive calls at
level i + 1 in the recursion.

Also note that mergesort takes exactly the same amount of time on every
array of size n. Therefore, the running time of mergesort is Θ(n log n) in the
worst case and on average.

Exercises

15.3.1. Run mergesort on an array containing the following elements:

22 37 25 60 16 42 38 46 19

Show the top level of the recursion, as in Figure 15.10. Then show the
entire recursion, as in Figure 15.11.

15.3.2. Run the merging algorithm on the following two sorted arrays:

First array Second array

[16 22 25 37 60] [19 38 42 46]

Illustrate this run as in Figure 15.12.

372 CHAPTER 15. SORTING

15.4 Quicksort

Any sorting algorithm must examine every element in the input array so the
running time of any sorting algorithm must be at least Θ(n). Note that this
statement applies to every sorting algorithm not just one of them. It is a state-
ment about the computational complexity of the sorting problem itself, not about
the running time of a particular algorithm.

Is it possible to sort in time Θ(n)? Anything smaller than Θ(n log n)? If the
elements to be sorted are numbers, then there are algorithms such as counting
sort that can sort in linear time (in exchange for possibly using a lot of memory).

But a generic sorting algorithm should make as little assumptions as possible
about the elements to be sorted. One possibility is to only require that elements
be comparable (with the < operator, for example). In that case, it is possible to
show that the running time of mergesort is the best possible: every comparison-
based algorithm has a running time that’s at least Θ(n log n). Even on average.1

However, there is a sorting algorithm that in practice tends to run faster than
mergesort. Of course, it can only run faster by a constant factor. We have studied
three sorting algorithms so far: selection sort, insertion sort and mergesort. All
three algorithms work by dividing the array in two parts, recursively sorting one
or two subarrays and combining these sorted subarrays. In the case of selection
sort and insertion sort, the array is divided very unevenly into a single element
on one side and all other elements on the other side. This leads to quadratic
running times. Mergesort achieves Θ(n log n) by dividing the array as evenly as
possible.

It is interesting to note, however, that insertion sort and mergesort have
something in common: both algorithms divide the array quickly and then spend
most of the effort on combining the two sorted subarrays. (In the case of inser-

1At Clarkson, this result is usually proven in CS344 Algorithms and Data Structures.

15.4. QUICKSORT 373

input: an array

if (array contains more than one element) {
choose a pivot element
partition the array around the pivot
sort each subarray

}

Figure 15.16: The quicksort algorithm

tion sort, one of these subarrays is just a single element.) Selection sort, on the
other hand, spends most of the effort on dividing the array and essentially no
effort on combining the resulting sorted subarray with the element that was set
aside. Can we design an algorithm that divides the array as evenly as possible,
like mergesort, but that spends most of the effort into dividing the array, like
selection sort, so that essentially no effort is required to combine the two sorted
halves?

A key observation is that combining two sorted halves would be trivial if all
the elements in one half were smaller than all the elements in the other half. This
observation leads to the quicksort algorithm, which is shown in Figure 15.16.
First, an array element is chosen to play the role of a pivot. Then, the array is
divided according to that pivot: all elements smaller than the pivot to the left,
all the others to the right. After recursively sorting the two subarrays, there is
nothing left to do.

Figure 15.17 illustrates a run of quicksort. The first line shows the initial
contents of the array. The second line shows the two subarrays that will be
recursively sorted. Element 42 was chosen as pivot. The third line shows the
result of sorting these subarrays. The fourth line shows the final contents of the
array.

374 CHAPTER 15. SORTING

[60 12 37 42 25 38 16]
[12 37 25 38 16] 42 [60]
[12 16 25 37 38] 42 [60]
[12 16 25 37 38 42 60]

Figure 15.17: A run of the quicksort algorithm (top level of recursion)

[60 12 37 42 25 38 16]
[12 37 25 38 16] 42 [60]
[12] 16 [37 25 38] 42 [60]
[12] 16 [25] 37 [38] 42 [60]
[12] 16 [25 37 38] 42 [60]
[12 16 25 37 38] 42 [60]
[12 16 25 37 38 42 60]

Figure 15.18: A run of the quicksort algorithm (entire recursion)

Figure 15.18 illustrates that same run of quicksort but by showing the entire
recursion, not just the top level. The first half of the lines show the initial con-
tents of the array at every level of the recursion. As if all the recursive calls at a
certain level were executed simultaneously. The elements that were chosen as
pivots are 42, 16 and 37. The second half of Figure 15.18 shows, for every level
of the recursion, the final contents of the array, after the recursive sorting of the
subarrays.

Like mergesort, quicksort is an example of a recursive algorithm that makes
two recursive calls. And as with mergesort, it is also possible to implement quick-
sort non-recursively but this requires more effort and the resulting algorithm is
more complicated and no more efficient than the recursive version. Therefore,
quicksort is another good example of recursion.

15.4. QUICKSORT 375

As you may have realized from the above illustrations, the performance of
quicksort depends heavily on the choice of pivot. We want a pivot that splits the
array as evenly as possible but also a pivot that doesn’t take too long to find.

In terms of splitting, the ideal pivot is the median element of the array. We
won’t describe the algorithm in these notes, but the median can be found in
linear time.2 This leads to the following recurrence relation for the running
time of quicksort, assuming that the size of the array is a power of 2:

T (2k) = 2T (2k−1) +Θ(2k) (when k ≥ 1)

T (1) = Θ(1)

TheΘ(2k) term is essentially the computation of the median and the partitioning
of the array. This is the same recurrence relation we had for mergesort. There-
fore, quicksort runs in timeΘ(n log n)when the median element is used as pivot.
However, the linear-time algorithm that computes the median is not that simple,
with the consequence that the hidden constant factors are somewhat large. So
it’s unlikely that this version of quicksort would run faster than mergesort.

A much faster option is to simply pick the first element of the array as pivot.
But if the array is already sorted, the smallest element would be used as pivot,
leading to the most uneven partition possible. What happens next depends on
the details of the partitioning step. For example, suppose that elements are
not reordered unnecessarily during the partitioning. Then, the array will be
partitioned into an empty array on one side and an ordered array on the other.
This implies that the smallest element will always be used as pivot and that every
partition will be as uneven as possible. In this case, the running time of quicksort

2At Clarkson, this algorithm is usually covered in CS344 Algorithms and Data Structures.

376 CHAPTER 15. SORTING

will be given by the following recurrence relation:

T (n) = T (n− 1) +Θ(n) (when n≥ 2)

T (1) = Θ(1)

where the Θ(n) term is essentially the time it takes to partition the array. This is
the same recurrence relation that gave the running time of selection sort. Recall
that its solution is Θ(n2).

In practice, it is not that uncommon for at least large portions of the input
array to already be sorted. Therefore, using the first element as pivot would lead
quicksort to often run slowly. Similar problems occur when the last or middle
elements are used as pivots.

Another idea is to use as pivot the median of the first, middle and last ele-
ments of the array. If the array is sorted, then this would cause the median to
be used as pivot, leading to the best possible partitions and an optimal running
time of Θ(n log n). But it’s not hard to construct arrays that would be unevenly
partitioned under this choice of pivot. (See one of the exercises.)

The safest option is probably to use a random element as pivot. This gives
a bad partition only if the pivot is among the smallest or largest elements of
the array. The probability that this should happen very often should be small.
In fact, it is possible to show that using a random element as pivot leads to an
average running time of Θ(n log n). The average is taken over all the possible
pivot choices and is the same for every input array.3

An algorithm that uses randomness is said to be a randomized algorithm.
Even though the randomized version of quicksort has an average running time of
Θ(n log n), it is still possible that the algorithm would always chose the minimum
element as pivot while running on some array. This is unlikely but possible. And

3At Clarkson, this result is usually proven in CS344 Algorithms and Data Structures.

15.4. QUICKSORT 377

in that case, the running time of quicksort would once again degenerate to the
Θ(n2) running time of selection sort.

Because this running time occurs when the partitions are as uneven as pos-
sible, it is tempting to conclude that the worst-case running time of quicksort is
Θ(n2). But the truth is we haven’t ruled out the possibility that quicksort may
run even slower for some other type of partitions. Fortunately, it turns out that
our intuition is correct: it is possible to show that the worst-case running time
of quicksort is Θ(n2).4

It is important to point out that even though the worst-case running time
of quicksort is Θ(n2), which is as bad as the running time of selection sort and
insertion sort, in practice, quicksort tends to run faster than even mergesort.
The fact that the average running time of quicksort is Θ(n log n), which is the
same as mergesort, explains why this is possible.

Study Questions

15.4.1. What is the fastest possible asymptotic running time of a comparison-
based sorting algorithm?

15.4.2. What are the worst-case and average-case running times of quicksort?

Exercises

15.4.3. Run quicksort on an array containing the following elements:

22 37 25 60 16 42 38 46 19

4At Clarkson, this is another result that is usually proven in CS344 Algorithms and Data
Structures.

378 CHAPTER 15. SORTING

Show the top level of the recursion, as in Figure 15.17. Then show the
entire recursion, as in Figure 15.18. Use the first element as pivot.

15.4.4. Describe an array that would partitioned as evenly as possible by choos-
ing the median of the first, middle and last elements as pivot. Describe an
array that would partitioned in the worst possible way by this choice of
pivot.

15.4.5. What is the best-case running time of quicksort? Clearly identify a best-
case input for each of the possible choices of pivot discussed in this section.

15.4.6. Implement quicksort.

Bibliography

[Bro87] Fred P. Brooks. No silver bullet: Essence and accidents of software
engineering. Computer, 20(4):10–19, 1987.

[CPP] cppreference.com. Web. Last accessed October 2016. http://

cppreference.com.

[Goo] Google C++ Style Guide. Web. Last accessed September 2015.
http://google−styleguide.googlecode.com/svn/trunk
/cppguide.xml.

[LB03] Craig Larman and Victor R. Basili. Iterative and incremental develop-
ment: A brief history. Computer, 36(6):47–56, 2003.

[Sim] Charles Simonyi. Hungarian notation. MSDN. Microsoft, 1999. Web.
Last accessed August 2015. http://msdn.microsoft.com/en−
us/library/Aa260976.

[Str] Bjarne Stroustrup. The C++ programming language. Web.
Last accessed October 2016. http://www.stroustrup.com/

C++.html.

[TA] Turing Award. http://www.acm.org/awards/taward.html.

379

380 BIBLIOGRAPHY

Index

abstract data type (ADT), 28
abstraction, 23

data, 28
procedural, 23

activation record, 245
agile software development, 235
argument

constant reference, 9
default, 56

array
dynamically allocated, 140

asymptotic
analysis, 316
equivalence, 315

auto, 150
automatic variable, 248

balanced binary search tree, 211
binary search, 333

catch, 107
class, 29

cohesion, 21
computational complexity, 372
constructor, 47

compiler-generated, 50
copy, 270
default, 47
explicit, 262

container, 119
conversion

implicit, 50
copy

deep, 141, 271
shallow, 141, 271

copy constructor, 123
coupling, 21

delegating constructors, 51
delete, 250
derived class, 89
design, 5, 232
destructor, 269
diagram

381

382 INDEX

component, 26
interaction, 237

dummy component, 240
dynamic, 124
dynamic variable, 248

equivalence relation, 327
evolution, 233
exception, 103

fail-safe software, 99
file

header, 68
implementation, 68

friend, 29
function

standalone, 41
function objects, 180

generic
algorithm, 145
container, 124
function, 169
programming, 169

hash table, 211
head node

dummy, 285

implementation, 11, 232

in-class initializers, 51
incremental development, 2, 234
independence, 21
information hiding, 21
inheritance, 92
initialization

default, 123
value, 123
zero, 123

initializer, 48, 104
initializer list, 123, 172
inline, 41
input validation, 111
insertion sort, 359
integrated development environment

(IDE), 70
iterative development, 2, 234
iterator, 146

begin, 148
bidirectional, 156
category, 156
constant, 155
end, 148
linked list, 293
random-access, 156
reverse, 155

Java, 34

INDEX 383

last-call optimization, 351
linked list, 201

circular, 286
traversal, 287

list, 202

maintenance, 233
make, 73
Makefile, 73
member

function, 32
memory allocation

automatic, 248
dynamic, 247

memory leak, 250
mergesort, 363
message, 31
method, 31

constant, 39
get, 53
set, 55

mixed-case format, 10
modularity, 20

advantages, 21

naming convention, 9, 53
new, 247
node, linked list, 283
null

character, 75
nullptr, 250

object, 31
default, 48

operator
address-of (&), 295
dereference-and-select (−>), 156
dereferencing (∗), 150
increment (++), 151
overloading, 59

pointer, 247
polymorphism, 92
preconditions, 99
private, 29
programming

imperative, 31
object-oriented (OOP), 31, 94

public, 32

quicksort, 373

randomized algorithm, 376
receiver, 31
recurrence relation, 356
recursion, 337
reliability, 99
responsibility-driven design, 237
reuse, 145

384 INDEX

robustness, 99
running time

asymptotic, 315
average-case, 329
worst-case, 329

scenarios, 236
searching

sequential search, 161
selection sort, 354
software life cycle, 233
specification, 1, 231
Standard Template Library (STL), 124
stream

I/O, 88
state, 92
string, 95

string
C, 75
C++, 81

stub, 240
subclass, 89

tail recursion, 350
template

class, 180
function, 168
instantiation, 169
parameter, 168

test driver, 11
testing

integration, 232
unit, 11, 232

Θ notation, 315
this, 273
try, 107

underscore format, 9

vector, 119
capacity, 276

waterfall model, 234
what-who cycle, 237

