Solution to HW #4

12. \(A \quad D \quad B \quad X \)

\(AND \quad B \)

\(x = 1 \) when both \(A \) and \(B \) are \(1 \)

13. \(A \quad B \quad C \quad D \quad X \)

\(NAND \quad B \quad C \quad D \quad X \)

\(x = 0 \) when \(A, B, C, D \) are all \(1 \)

16. \(A \quad B \quad C \quad X \)

\(NOR \quad B \quad C \quad X \)

Output \(x = 1 \) when \(A, B, C \) are all \(0 \)

20. \(A \quad B \quad X \)

\(A \quad D \quad X \)

Note: From the truth table

- if \(B = 1 \), \(x = \overline{A} \) (Inverted)
- if \(B = 0 \), \(x = A \) (i.e., \(x \) is same)
See problem #20:
X in this case will be inverted.
with respect to the solution
shown in #20.

\[x_1 = (\overline{A} \cdot B) \]
\[x_2 = (\overline{A} \cdot B) \]
\[x_3 = (A \cdot B) \]

```
entity AND3 is
port (A, B, C: in bit; 
    X: out bit);
end entity AND3;
architecture AND3.arch of AND3 is
begin
    X <= (A and B) and C;
end architecture AND3.arch;
```

We can also write: \(X \leq A \text{ and } B \text{ and } C \).

NAND gate

3-input OR gate