LivDet 2011- Fingerprint Liveness Detection Competition 2011
Final Report

David Yambay, Stephanie Schuckers Clarkson University
Luca Ghiani, Gian Luca Marcialis, Fabio Roli, University of Cagliari, Italy
CITeR Spring 2011©
Problem

- Fingerprint vulnerable to artificial reproductions made of silicone, gelatin, Play-Doh, etc.
- Liveness detection proposed to check the vitality of fingers
- Many detection approaches published and tested on their home-made live and spoof databases
Liveness Detection Competition—LivDet 2009

- First liveness detection competition at ICIAP 2009 with a public liveness database
- Collaboration with Univ. of Cagliari
- Focusing on software-based fingerprint liveness
- Scanners used: CrossMatch, Identix, Biometrika
- 2000 live and spoof samples for each scanner
- Four participants

![Graphs showing Ferrfake and Ferrlive rates for different datasets and scanners](image-url)
LivDet 2011

- Second Liveness Detection competition—LivDet 2011
- The focus of this competition expanded from that of the first competition
- There are two parts for entrants
 - Part 1: Algorithms – similar to LivDet 09 with expanded spoof types
 - Part 2: Systems – Submission of hardware systems
Our Approach
LivDet II Competition—Algorithms

- Open to academic and industrial institutions
- Supply public fingerprint liveness database
 - Four optical sensors (Biometrika, Digital Persona, ItalData, Sagem)
 - Live database with different quality levels
 - High quality spoof database made of five different materials
 - Playdoh, Gelatin, Silicone and Woodglue on all devices
 - Latex on Digital Person and Sagem
 - Ecoflex on Biometrika and ItalData
- Setup server for downloading training dataset after signing license agreement
- Build the performance evaluation structure (experimental protocol) for the participants
- Accept submissions for algorithms as Win32 console applications
- Process the executable application file on the test dataset from different submitted algorithms
- Present the competition results on conference in 2011 (e.g. Biometric Consortium) and future journal
- Dataset made available to researchers after competition
Device Characteristics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sensor</th>
<th>Model No.</th>
<th>Resolution (dpi)</th>
<th>Image Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Biometrika</td>
<td>FX2000</td>
<td>500</td>
<td>315x372</td>
</tr>
<tr>
<td>#2</td>
<td>Digital Persona</td>
<td>4000B</td>
<td>500</td>
<td>355x391</td>
</tr>
<tr>
<td>#3</td>
<td>ItalData</td>
<td>ET10</td>
<td>500</td>
<td>640x480</td>
</tr>
<tr>
<td>#4</td>
<td>Sagem</td>
<td>MSO300</td>
<td>500</td>
<td>352x384</td>
</tr>
</tbody>
</table>

- Resolution was kept consistent across datasets
- Image size was allowed to vary
Device Characteristics - Live

- 10 images were collected per finger per subject
- Sagem images per finger varied from subject to subject

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sensor</th>
<th>Live Training Samples</th>
<th>Live Testing Samples</th>
<th>Number of Subjects</th>
<th>Number of Fingers</th>
<th>Images per Finger</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Biometrika</td>
<td>1000</td>
<td>1000</td>
<td>100</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>#2</td>
<td>Digital Persona</td>
<td>1000</td>
<td>1000</td>
<td>100</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>#3</td>
<td>ItalData</td>
<td>1000</td>
<td>1000</td>
<td>100</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>#4</td>
<td>Sagem</td>
<td>1000</td>
<td>1000</td>
<td>56</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
Device Characteristics - Spoof

- Number of subjects varied per dataset based on quality of spoof images
- Playdoh and Ecoflex were used on only two of the datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sensor</th>
<th>Ecoflex Training</th>
<th>EcoFlex Testing</th>
<th>Number of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Biometrika</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#2</td>
<td>Digital Persona</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#3</td>
<td>ItalData</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#4</td>
<td>Sagem</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sensor</th>
<th>PlayDoh Training</th>
<th>PlayDoh Testing</th>
<th>Number of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Biometrika</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#2</td>
<td>Digital Persona</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#3</td>
<td>ItalData</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#4</td>
<td>Sagem</td>
<td>200</td>
<td>200</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sensor</th>
<th>Gelatin Training</th>
<th>Gelatin Testing</th>
<th>Number of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Biometrika</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#2</td>
<td>Digital Persona</td>
<td>200</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>#3</td>
<td>ItalData</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#4</td>
<td>Sagem</td>
<td>200</td>
<td>200</td>
<td>40</td>
</tr>
</tbody>
</table>
Device Characteristics - Spoof

- Performed a visual inspection of spoof images
- Rejected images that were missing portions of the image or were of extreme poor quality

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sensor</th>
<th>Latex Training</th>
<th>Latex Testing</th>
<th>Number of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Biometrika</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#2</td>
<td>Digital Persona</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#3</td>
<td>ItalData</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#4</td>
<td>Sagem</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sensor</th>
<th>Silicone Training</th>
<th>Silicone Testing</th>
<th>Number of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Biometrika</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#2</td>
<td>Digital Persona</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#3</td>
<td>ItalData</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#4</td>
<td>Sagem</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sensor</th>
<th>Wood Glue Training</th>
<th>Wood Glue Testing</th>
<th>Number of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Biometrika</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#2</td>
<td>Digital Persona</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#3</td>
<td>ItalData</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>#4</td>
<td>Sagem</td>
<td>200</td>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>
Our Approach
LivDet II Competition—Systems

- Open to academic and industrial institutions
- Trained systems to be submitted for evaluation
- Accept submitted hardware/software systems
- System input (two modes: enrollment and verification)
 - Fingerprint placed on sensor
- System output
 - Collected image
 - Corresponding match score and liveness score for each image output
 - Failure to acquire
- Laboratory staff will systematically attempt to spoof the system and also collect corresponding live data
 - 750 attempts for five different materials (Play-Doh, gelatin, silicon, Body Double, and latex)
 - 3 images per spoof, 2 fingers per subject, 25 subjects
 - 500 live attempts from 50 people
 - 5 images per finger, 2 fingers per subject, 50 subjects
- Build the performance evaluation structure (experimental protocol) for the participants
- Present the competition results at Biometric Consortium and future journal
Submissions

• Four submissions were received for each of the two parts of the competition.
• Part 1: Algorithm Submissions
 – Dermalog Identification Systems GmbH (Dermalog)
 – Federico II University (Federico)
• Part 2: System Submissions
 – Dermalog
 – Greenbit Biometric Systems
• Dermalog submitted a revised algorithm after the closure of the competition due to an error in their program (for Digital Persona dataset only).
Part 1: Algorithm Results

- Threshold value for testing was set at 50%
- Frederico had the best results on a single dataset with the Digital Persona Dataset
- Overall, Dermalog had the best results with an overall classification error rate of 22.9% compared to Frederico’s 25.6%
Part 1: Overall Classification Error Rate

The equal error rate is near a threshold of 50 for both algorithms.
Part 1: Algorithm Results

- Both Algorithms had a 0% failure to enroll rate
- Dermalog had a processing time approximately 10x faster than that of Federico
- Dermalog processed images at an average elapsed time of 0.28 seconds per image
- Federico processed images at an average elapsed time of approximately 3 seconds per image
Part 2: System Results

- Dermalog received the overall best results in Part 2: Systems
- Dermalog has classification error rates of 0.8% FerrFake and 42.5% FerrLive
- Greenbit had consistent errors, but overall higher
- Greenbit has classification error rates of 39.5% FerrFake and 38.8% FerrLive
Part 2: Equal Error Rate Curves

- Changing the threshold does not significantly change the results for the system.
Part 2: Known vs. Unknown Recipes

- The spoofing side of Part 2: Systems consisted of 5 different spoof recipes, 3 known and 2 unknown.
- Unknown recipes had larger error rates than known.
- Both systems had error rates approximately 3.5x larger for the recipes that were unknown compared to known.
Part 2: FerrFake Per Spoof Type

- Unknown Recipes (Latex, Body Double) had much higher error overall error rates than known recipes (Gelatin, Playdoh, Silicone)
Discussion of Part 1: Algorithm Results

- In Part 1: Algorithms, the algorithms had generally low scores for the Sagem and Digital Persona Dataset.
- The algorithms had generally high scores for the Biometrika and ItalData.
- Each submitted algorithm had certain spoof materials that they were strong against and some that they were weaker against.
- This can seem to cause the higher error rates that we are seeing for overall error rates.
Part 1: Example of FerrFake Per Spoof Material (Federico)

- Federico Algorithm for Digital Persona Dataset:
 - 0% FerrFake on Silicone, Playdoh and Wood Glue
 - 30% FerrFake on Gelatin and Latex
 - Overall 6.2% FerrFake
Discussion of Part 2: System Results

- Both systems had unexpectedly high FerrLive scores
- Dermalog seemed to have an advantage against spoofs being a heated scanner as opposed to the non-heated GreenBit
- The heated scanner was able to melt some of the spoofs, specifically gelatin, rendering them useless
Part 2: Example Rejected and Accepted Live Images

Rejected Images on Dermalog

Accepted Images on Dermalog
Part 2: Example Spoof Images

Images from Left to Right for both systems. A: Live, B: Body Double, C: Gelatin, D: Latex, E: Playdoh, F: Silicone
Part 2: Histograms of System Errors per Subject

- Histogram of number of error per subject
- No distinct pattern for errors across subjects
Conclusions

• Best overall results were shown by Dermalog in both Part 1 and Part 2 of the competition
• It is hoped that this competition will be continued in order to promote the state of the art in Liveness Detection
• Creating effective solutions are an important step in minimizing the vulnerability of spoof attacks
Current and Next Steps

- Process the datasets using quality matchers NFIQ and VeriFinger
- Apply match and decision level fusion techniques to both the algorithm and system datasets
- One algorithm submission was not originally received and will be tested against the datasets and results reported at a future time