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Abstract—This paper introduces a new edge-grouping method
to detect perceptually salient structures in noisy images. Specif-
ically, we define a new grouping cost function in a ratio form,
where the numerator measures the boundary proximity of the
resulting structure and the denominator measures the area of
the resulting structure. This area term introduces a preference
towards detecting larger-size structures and, therefore, makes
the resulting edge grouping more robust to image noise. To find
the optimal edge grouping with the minimum grouping cost, we
develop a special graph model with two different kinds of edges
and then reduce the grouping problem to finding a special kind
of cycle in this graph with a minimum cost in ratio form. This
optimal cycle-finding problem can be solved in polynomial time
by a previously developed graph algorithm. We implement this
edge-grouping method, test it on both synthetic data and real
images, and compare its performance against several available
edge-grouping and edge-linking methods. Furthermore, we dis-
cuss several extensions of the proposed method, including the
incorporation of the well-known grouping cues of continuity
and intensity homogeneity, introducing a factor to balance the
contributions from the boundary and region information, and the
prevention of detecting self-intersecting boundaries.

Index Terms—Boundary detection, edge grouping, edge linking,
graph models, perceptual organization.

I. INTRODUCTION

GROUPING (or perceptual organization) is an important
problem in computer vision and image processing that

seeks to identify perceptually salient structures in noisy images.
This is usually achieved by first constructing a set of tokens
from the input image and then grouping a subset of these to-
kens into some salient structures. The grouping process is usu-
ally designed to minimize a predefined grouping cost (func-
tion) that negatively measures the perceptual saliency of the re-
sulting structure based on psychological vision rules, such as the
Gestalt laws [1]. As an important step in mid-level computer
vision, grouping can provide useful input to many high-level
computer-vision applications such as object recognition or con-
tent-based image retrieval.

The challenge in grouping comes from both the definition
of the grouping cost and the development of an algorithm for
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finding the optimal grouping with the minimum grouping cost.
In this paper, we develop a new grouping method within the
edge grouping framework, where the tokens are a set of line
segments detected from the input image. The goal is then to
identify a subset of these line segments and group them into
complete boundaries of perceptually salient structures. Being
able to more conveniently encode the well known Gestalt laws
[1], edge grouping has been studied for decades with a long line
of available edge-grouping methods, e.g., [2]–[14].

Most of the previous edge-grouping methods only consider
boundary information in their grouping cost. For example,
in almost all the previous edge-grouping methods, boundary
proximity is always considered to make the resulting boundary
contain gaps as short as possible when connecting the line
segments into a boundary. However, many constructed line
segments in fact come from image noise (or image texture)
and, therefore, considering only boundary information usu-
ally makes the grouping very sensitive to image noise. Some
boundary properties such as continuity, which requires the
resulting boundary to be smooth, and convexity, which requires
the resulting boundary to be convex, may partially solve this
problem by only detecting smooth and convex structures.
However, the incorporation of these properties may limit the
applicability of the grouping methods since many salient struc-
tures in real applications are not always smooth or convex.

To address this problem, in this paper, we develop a new
edge-grouping method that combines boundary and region in-
formation. In its baseline form, it combines two boundary prop-
erties of proximity and closure and one region property of the
enclosed region area. Specifically, the grouping cost for a re-
sulting boundary is defined as the ratio between the total gap
length along the boundary and the region area enclosed by the
boundary. The closure is set as a hard constraint by requiring
the detected boundary to be closed. This way, we introduce a
preference to detect larger-size structures and, therefore, make
the grouping more robust to image noise. From this baseline
method, we also discuss extensions for finding a better balance
between the boundary proximity and region area, and incorpo-
rating other types of boundary and region information that may
be desirable in certain applications.

To locate the closed boundary that minimizes this ratio-form
grouping cost, we first develop a new graph model where line
segments and in between gaps are modelled by two different
kinds of edges. We represent each line segment or in between
gap by two edges, so that the boundary and region informa-
tion can be encoded into two edge-weight functions, respec-
tively. Based on this graph model, we reduce the edge-grouping
problem to finding a special kind of cycle with a minimum
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ratio-form cost. This cycle-finding problem can be solved in
polynomial time by a globally optimal graph algorithm. We im-
plement this edge-grouping method and test it on both synthetic
data and real images, and compare its performance against sev-
eral available edge-grouping and edge-linking methods.

The remainder of this paper is organized as follows. Section II
briefly discusses the major related work. Section III formulates
the problem by introducing a new grouping cost that combines
boundary and region information. Section IV presents the de-
tails of the graph model that is used for solving the formulated
edge-grouping problem. Section V presents the experimental re-
sults on synthetic data and real images. Section VI discusses
several extensions to the proposed method. Section VII is the
conclusion.

II. RELATED WORK

As detailed later in Section III, from a set of line (curve) seg-
ments detected from an image, edge grouping aims to identify
the ones along the desired salient structure boundaries and con-
nect them to completely recover such boundaries. Therefore,
the output of edge grouping usually consists of one or several
complete boundaries. There has been a long line of research on
edge grouping with many grouping costs and grouping algo-
rithms developed in past decades [2]–[14]. However, most of the
available edge-grouping methods only consider the boundary
information, such as the Gestalt laws of closure, proximity and
continuity.

In [11], Shashua and Ullman use a local parallel network to
model the line segments and define a grouping cost by com-
bining the boundary proximity and continuity. An iterative up-
date algorithm is developed to search for an optimal boundary
that may not be closed. Alter and Basri [2] further conduct an
extensive analysis of this parallel-network method and point out
the problems when applying this method iteratively to detect
the second most salient boundary and the problems due to dis-
cretization. Recent work on edge grouping includes Elder and
Zucker [5], Williams and Thornber [14], and the ratio-contour
method [13] where boundary closure, continuity and proximity
are combined in the grouping cost. Among these three methods,
the ratio-contour method has been shown to have a better perfor-
mance by being more robust to image noise. Our experiments in
Section V further show that the method developed in this paper
usually performs better than the ratio-contour method.

In [12], we develop a convex edge-grouping method that com-
bines both boundary and region information. The grouping cost
is also defined in a ratio form with a combined measure of prox-
imity and region intensity homogeneity in the numerator and
the region area as the denominator. However, the graph mod-
eling and algorithm used in [12] can only detect convex bound-
aries. Without the convex constraint, we believe it is an NP-hard
problem to minimize the grouping cost in [12]. In [15], we
pair up line segments into a new grouping token in order to
detect symmetric boundaries by combining boundary and re-
gion information. However, the assumption of symmetry does
not hold for all structures in the real world. Note that our pre-
vious work on ratio contour, convex grouping and symmetric
grouping also use a ratio-form grouping cost and finally reduces
the problem to the graph problem of finding the minimum ratio

alternate cycle, which is similar to the one derived in this paper,
as shown at the end of Section IV. However, both the grouping
cost and graph-modeling process developed in this paper are dif-
ferent from the ones developed in these previous work since the
grouping tasks are different.

Closely related to edge grouping is edge linking, a category
of methods that also connect the detected line/curve segments
(or the detected edges from an edge detector) [16]–[21]. How-
ever, different from edge grouping, edge linking aims at en-
hancing the edge-detection result by connecting short edges to
form longer edges. This is different from edge grouping inves-
tigated in this paper, which aims to detect one or several salient
closed boundaries. Some edge-linking methods [18], [21] con-
nect all the detected edges to segment the image into many re-
gions. However, further postprocessing, such as region split-
ting/merging, is usually needed to identify a salient structure
from these regions because many noise and texture segments are
also linked. In fact, the edge-linking methods proposed in [18],
[21] are mainly applied to segment range images without heavy
noise and texture. Edge grouping and edge linking may have
different applications. In Section V-B, we will further show the
differences between edge grouping and edge linking by showing
comparison experiments on several real images. Note that, in
some literature [18], edge linking is called edge grouping. In
this paper, we distinguish them to clarify the contribution of the
proposed method.

While combining boundary and region information has not
been extensively explored in previous edge-grouping methods,
except for our recent work on convex and symmetric edge
grouping [12], [15], [22], it has been investigated in several
pixel-grouping methods. Different from edge grouping, pixel
grouping treats each image pixel as a token and the goal is usu-
ally to find a boundary that partitions the image into foreground
and background regions or two subregions without labelling the
foreground and background. Comparing edge grouping with
pixel grouping, there are both advantages and disadvantages.
For example, edge grouping simplifies the quantization of many
important boundary properties, such as continuity, convexity,
and symmetry, which may be difficult to consider in pixel
grouping. In addition, the number of line segments detected in
an image is usually much smaller than the number of pixels in
an image. This may make the edge grouping to take less CPU
time when conducting globally optimal grouping. However,
edge grouping may fail when the line segments can not be well
detected from the input image.

In [23], Cox et al. present a ratio-region method to detect
a closed boundary that partitions an image into foreground
and background regions. The grouping cost is of a ratio form,
with the numerator measuring the boundary property and
the denominator measuring the foreground region area. It
uses an optimization algorithm of repeating the minimum-cut
max-flow algorithm to find the graph partitioning that mini-
mizes the grouping cost. In [24], Jermyn and Ishikawa further
extend the ratio-region method so that different boundary and
region properties can be considered in the grouping cost. In
this method, the problem is modelled in a directed graph and
finally reduced to a graph problem of finding the minimum ratio
cycle in the constructed directed graph. This graph problem
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Fig. 1. Typical steps in applying an edge-grouping method to a real image to detect salient boundaries. (a) Input image, (b) the detected segments, (c) constructing
gap-filling segments (dashed lines), and (d) the detected closed boundary that traverses some detected and gap-filling segments alternately.

shares some similarity with the one formulated in this paper,
but differs in a) its graph is directed and the graph in this paper
is an undirected solid-dashed graph, and b) it searches over
all simple cycles while we only consider alternate cycles. In
addition, some extensions, such as the proximity exponenti-
ation introduced in Section VI-C, cannot be applied in pixel
grouping.

In [25], Shi and Malik develop a normalized-cut method
that seeks to partition an image into two balanced regions,
without the labelling of the foreground and background. Given
the NP-completeness of this problem, spectral graph theory is
applied to achieve an approximate solution. In [26], Sumengen
and Manjunath present a graph-partitioning active contour
approach to iteratively search for a locally optimal boundary
that minimizes the grouping cost used in normalized cut. In
[27], Chan and Vese define a grouping cost that requires the
resulting boundary to be both smooth and enclose a region with
homogeneous intensity. In [28], Wang and Oliensis define a
comprehensive grouping cost that measures the complexity of
both foreground and background regions. These complicated
grouping costs, however, usually lead to NP-hard or even
nonpolynomial-time problems and only local optimal solutions
can be found by gradient-descending approaches, such as
active contours. By using -partitioning and region filtering,
Liouet al. [29] develop a parallel technique to group pixels into
regions with certain intensity variations.

III. PROBLEM FORMULATION

As illustrated in Fig. 1, applying an edge-grouping method to
a real image to detect perceptually salient structure boundaries
usually involves three steps. The first step is to construct a set of
line segments by a) running an edge detector, such as the Canny
detector [30], on the input image to detect a set of edges, and
b) approximating the detected edges with a set of straight line
segments, as shown in Fig. 1(b). These straight line segments
are usually referred to as detected (line) segments. Since these
detected segments are disconnected from each other, in order to
construct a closed boundary we need to fill the gaps between
them. So, in the second step, we fill the gaps between the de-
tected segments by connecting all possible pairs of endpoints
of different detected segments. These connections are referred
to as gap-filling (line) segments, as denoted by dashed lines in
Fig. 1(c).1 This way, a boundary is defined as a cycle that tra-
verses a set of detected and gap-filling segments alternately. The

1Note that not all possible gap-filling segments are shown in Fig. 1(c), in order
to keep it readable.

third step is to develop an algorithm to find such a boundary that
minimizes a selected grouping cost, as shown in Fig. 1(d).

To combine the boundary and region information, in this
paper, we introduce a ratio-form grouping cost for a closed
boundary that traverses some detected and gap-filling seg-
ments alternately as

(1)

where the numerator is the total length of the gap-filling
segments along the boundary and the length of a detected/
gap-filling segment is measured by the 2-D Euclidean distance
between its two endpoints. This numerator reflects the prox-
imity of the boundary: the smaller the total gap length ,
the higher the proximity and the saliency of the boundary .

is the region enclosed by the boundary and the de-
nominator is the region area, which sets a pref-
erence to detect larger structures. Such a preference makes the
grouping more robust against image noise. In Section IV, we de-
velop a graph model to find a closed boundary that minimizes
the grouping cost (1).

IV. GRAPH MODELING AND ALGORITHM

We begin by constructing a graph , with a set
of vertices and a set of edges

. Particularly, we construct a pair of edges
and for each line segment. We call the constructed pair of
edges to be solid edges, if the corresponding line segment is a
detected one, and dashed edges, if the corresponding line seg-
ment is a gap-filling one. This way, we actually construct two
vertices, and , for each line-segment endpoint. Fig. 2
shows an example, where for the detected line segment
shown in Fig. 2(a), we construct two solid edges, and ,
shown by solid lines in Fig. 2(b). For the gap-filling segment

, in Fig. 2(a), we construct two dashed edges, and ,
shown by dashed lines in Fig. 2(b), and for each line-segment
endpoint , 1, 2, 3, we construct two vertices, and

, 1, 2, 3. We will show that this construction of edges in
pairs facilitates the quantization of the region area enclosed by
the boundary .

One problem in this graph construction is to determine the
edge connection relations, since each line segment is repre-
sented by a pair of edges. For example, in Fig. 2(a) and (c), the
detected segment is connected to the gap-filling segment

at . In the constructed graph we need to decide whether
we are going to link to and to , or link to
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Fig. 2. Illustration of the graph construction. Edges corresponding to two segments with (a), (b) the same direction; (c), (d) opposite direction.

Fig. 3. (a) Boundary with three detected segments and three gap-filling segments. (b), (c) Two “mirror” cycles that correspond to the boundary shown in (a).

and to . In this paper, we solve this problem by implicitly
associating each of the two edges in the graph, corresponding to
the same line segment, with a different direction. Particularly,

indicates that the direction along the corresponding line
segment is from the left endpoint to the right endpoint (LR),
and indicates that the direction along the corresponding
line segment is from the right endpoint to the left endpoint
(RL). For any line segment, the left endpoint is the one with
the smaller -coordinate and the right endpoint is the one with
the larger -coordinate. For example, for the line segment

in Fig. 2(a) and (c), is the left endpoint and is
the right endpoint. This way, we can uniquely determine the
edge-connection relation by requiring consistency in direction
between the two neighboring line segments. Fig. 2(b) and (d)
show the edge connections constructed from the line segments

and shown in Fig. 2(a) and (c), respectively. If the
-coordinates of the two endpoints are equal, we can decide by

the -coordinates of the two endpoints in a similar fashion. In
this case, we define the point with the smaller -coordinate as
the “left” endpoint, and the one with the larger -coordinate as
the “right” endpoint. Note that the constructed graph is still an
undirected one and we only use this direction information to
define the edge-weight functions as discussed later.

In this constructed graph , a closed boundary that tra-
verses some detected and gap-filling segments alternately is
modeled by two cycles that traverse the corresponding solid
and dashed edges alternately. An example is shown in Fig. 3,
where the boundary is modeled by the two cycles
shown in Fig. 3(b) and (c). We can see that these two cycles
are the “mirrors” of each other, i.e., for a pair of edges and

constructed for the same line segment, if one of them is
contained in one cycle, the other must be contained in the other
cycle. For convenience, we call the graph to be a solid-dashed
(SD) graph, because no two solid edges are neighboring to each
other, and we refer to a cycle that traverses solid and dashed
edges alternately as an alternate cycle. This way, the problem
of finding the boundary that minimizes the grouping cost

given in (1) can be reduced to the problem of finding an
optimal alternate cycle in the constructed SD graph if we
can quantify the grouping cost by some edge weights
in .

We define two edge-weight functions, the first (edge) weight
and the second (edge) weight , for each edge .

Given any line segment , we set the first weight for the
corresponding two edges (see the equation at the bottom of the
page), where is the length of the line segment (the
2-D Euclidean distance between and ). For both solid and
dashed edges, their second weights are defined as a signed area
associated to the corresponding line segment. Specifically, as
shown in Fig. 4(a), let the bottom-left pixel in the input image
be the origin, the horizontal direction be the direction of the

-axis, and the vertical direction be direction of the -axis. The
area associated to a line segment is defined as the area of
the region bounded by this line segment and its projection in the

-axis. The sign of this area is defined to be positive for the edge
corresponding to a line segment that bears a LR direction and
negative otherwise. For the example shown in Fig. 4(a), we have

, where
and are the projections of and onto the -axis. This
definition allows us to calculate the total area within a boundary

if is a detected segment
if is a gap-filling segment
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Fig. 4. Illustration of defining the second weight for an edge. (a) Area asso-
ciated to a line segment. (b) The region area enclosed by a closed boundary is
equal to the sum of the signed areas associated to the line segments along this
boundary.

by simply summing up the signed areas associated to each of its
line segments. An example is shown in Fig. 4(b), where the area
of the polygon is equal to the summation of positive
areas associated to , , , and negative areas asso-
ciated to , , and .

As discussed above, a closed boundary corresponds to two
alternate “mirror” cycles and in , as shown in Fig. 3(b)
and (c). Since the edges in and are constructed in pairs,
we have

and

Without loss of generality, let the cycle be the one with the
positive total second weight, i.e., . It
is easy to verify that is equal to the numerator of
and is equal to the total area of the enclosed region, i.e.,
the denominator of . Since for every cycle there exists
a “mirror” cycle in , it is easy to see that the cycle that
minimizes

(2)

is a version (i.e., ) that corresponds to the
boundary that minimizes , i.e., . This
way, we only need to find an alternate that minimizes
the cycle ratio . This problem can be solved in polynomial
time by the minimum-ratio-alternate cycle algorithm presented
in [13].

Particularly, the minimum-ratio-alternate cycle algorithm
finds the desired optimal cycle by three polynomial-time re-
ductions [13]: a) redistribute the weights of the solid edges in
the graph to the adjacent dashed edges, so that for each solid
edge both of its weights are zero, b) reduce the problem of
finding the minimum ratio cycle to the problem of detecting
an alternate cycle with negative total weights, and c) reduce
the problem of detecting a negative-weight alternate cycle to
the problem of finding the minimum-weight perfect matching,
which can be solved in polynomial time [31]. According to
[13], the time complexity of the minimum-ratio-alternate cycle

algorithm is with and being the number
of vertices and edges in the graph, respectively.

V. EXPERIMENTS

We implement the above graph model and algorithm in C++
and evaluate the proposed edge-grouping method on a set of
synthetic data and real images.2 The synthetic data was directly
generated as a set of detected line segments. For the real im-
ages, we construct the detected segments by edge detection and
line approximation. Particularly, we use the Canny edge detector
from the Matlab image processing toolbox, and the line ap-
proximation package developed by Kovesi [32]. For the Matlab
Canny edge detector, we use its default settings, and for the line
approximation package, we set the minimum edge length to be
processed to 30 pixels, and the maximum deviation between an
edge and its fitted line segment to 2 pixels. All CPU times re-
ported in this paper come from a 2.33-GHz 64-bit Xeon Linux
workstation with 8 GB of memory.

A. Experiments on Synthetic Data

To evaluate the proposed edge-grouping method quantita-
tively, we construct a set of synthetic data with known desired
salient structure boundaries, or ground truth. For constructing a
synthetic data sample, we pick one of the ten polygonal bound-
aries shown in Fig. 5 as the ground truth and placed it inside
a square region of size 128 128. Then we remove a certain
percentage of segments along this ground-truth boundary at
random locations to construct some gaps and the remaining
segments are then included as detected line segments. The gap
percentage along the ground-truth boundary (i.e., the percentage
of the ground-truth boundary that is removed to construct gaps)
is chosen from the set .
We then construct a set of additional detected line segments to
simulate the image noise. Specifically, these noise segments
are placed at random locations (inside the 128 128 square
region), in random directions, and with a length selected
randomly between 3 and 7 pixels (all properties uniformly
distributed). The number of added noise segments is chosen
from the set . An example is shown in Fig. 6,
where the ground truth is chosen to be the fourth boundary in
Fig. 5. Fig. 6(c) shows a constructed synthetic data sample by
removing 30% of the ground-truth boundary’s perimeter and
then adding 40 noise segments shown in Fig. 6(b). To remove

percent of the ground-truth boundary, we uniformly partition
the boundary into 20 line segments, and then removing
percent of these line segments randomly.

We measure the accuracy of an edge-grouping result using
Jaccard’s similarity coefficient, , where

and are the region bounded by the optimal boundary
detected by the proposed edge-grouping method and the one
bounded by the ground-truth boundary, respectively, and is
the area of . Based on this accuracy measure, we also compare
the performance of the proposed method against the ratio-con-
tour method [13], an edge-grouping method that has been shown
to perform more favorably than several other state-of-the-art

2The software developed in this work can be downloaded from http://www.
cse.sc.edu/~ songwang/document/RRC.tgz.
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Fig. 5. Ten polygonal closed boundaries used for the construction of synthetic data.

Fig. 6. Illustration of the synthetic data construction and the grouping results. (a) Detected segments constructed from the ground-truth boundary. (b) Additional
noise segments. (c) A constructed synthetic data sample by combining the segments shown in (a) and (b). (d) Optimal boundary detected from (c) by applying the
ratio-contour method developed in [13]. (e) Optimal boundary detected from (c) by applying the proposed edge-grouping method.

Fig. 7. Performance of the proposed method and the ratio-contour method on the 3 500 synthetic data samples.

edge-grouping methods. By considering only boundary prop-
erties of proximity and continuity, the grouping cost used in the
ratio-contour method is

where is the curvature and is the parameter of the
arc-length parameterized boundary . This grouping cost is
also of a ratio form. However, its denominator is the boundary
perimeter, which helps improve the grouping robustness against
image noise by avoiding producing overly short boundaries.
Note that in this ratio-contour method, the gap-filling tokens
are not constructed as straight line segments, but instead
approximated as Bezier curves, which connect the detected
segments with continuous tangent directions and, therefore,
allow the measuring of curvature along the resulting boundary.
In our experiments, we set the parameter at its default value
of 10 [13]. Fig. 6(d) and (e) shows the grouping results of
running the ratio-contour method and the proposed method on
the segments shown in Fig. 6(c), respectively. These results
represent a grouping accuracy of 0.51 and 0.99, respectively.

As mentioned above, we have ten different choices of the
ground-truth boundaries, seven different choices of the gap
percentage along the ground-truth boundary, and five different
choices of the number of additional noise segments. For each
possible combination of these choices, we also run the random
sampling for noise segments ten times to achieve ten dif-
ferent sets of noise segments. Therefore, in total, we construct

synthetic data samples. We run
the edge-grouping methods on each of them and evaluate the
grouping accuracy by comparing the detected optimal boundary
with the ground truth. Fig. 7 shows the performance curves
of the proposed edge-grouping method and the ratio-contour
method developed in [13]. The performance in Fig. 7(a) is
shown in terms of the gap percentage along the ground-truth
boundary and each point in this figure indicates the average
accuracy over data samples with the
same gap percentage along the ground-truth boundary. The
performance in Fig. 7(b) is shown in terms of the number of the
additional noise segments and each point in this figure indicates
the average accuracy over data samples with
the same number of additional noise segments. These curves
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Fig. 8. Edge-grouping results in ten real images. (From left to right) Column 1: the input image; column 2: the Canny detection result; column 3: the detected
segments resulting from line approximation; column 4: the optimal boundary detected by the ratio-contour method; column 5: the optimal boundary detected by
the proposed method.; column 6: the number of detected segments in column 3; column 7: the CPU time (in seconds) taken by the ratio-contour method; column
8: the CPU time (in seconds) taken by the proposed method.

clearly show that the inclusion of the region-area information
in the proposed method leads to better grouping accuracy than
the ratio-contour method. The main reason is that the ratio-con-
tour method explicitly incorporates the continuity property
to improve its robustness against noise, but many boundaries
in the real world are not necessarily smooth everywhere. For
example, as shown in Fig. 6(d), the continuity preference may

prevent the ratio-contour method from correctly detecting the
desired ground-truth boundary completely.

B. Experiments on Real Images

We also test the proposed edge-grouping method on a
set of real images selected from the Berkeley segmentation
dataset [33]. All real images have a size of either 481 321 or
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Fig. 9. Edge-grouping results on another ten real images. Each column depicts the same information as in Fig. 8.

321 481. In order to reduce the number of the constructed
gap-filling segments, which can run in the order of where

is the number of detected segments, we do not construct
gap-filling segments that are highly unlikely to belong to the
optimal boundary. Specifically, in our experiments, we do
not construct a gap-filling segment between the two segment

endpoints if the distance between these two endpoints is larger
than 50 pixels.

The results on 20 test images are shown in Figs. 8 and 9.
We can see that, for most of them, the proposed method detects
the salient boundaries better than the ratio-contour method, e.g.,
Figs. 8(a), (c)–(h), and (j) and 9(b)–(j). There are also several
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Fig. 10. Illustration of the differences between edge grouping and edge linking. (a)–(d) Experimental results on the real images shown in Fig. 8(h) and (c) and
Fig. 9(a) and (d), respectively. Column 1: Canny detection result. Column 2: Optimal boundaries detected by the proposed method. Column 3: Edge-linking result
from the Ghita–Whelan method. Column 4: Edge-linking result from the Farag–Delp method.

cases where both methods produce similar results, as shown in
Fig. 8(b), and cases where two methods produce different yet
both acceptable results, as shown in Fig. 8(i). Note that, the
incorporation of the region-area term in the proposed method
does not mean that the proposed method always produces a
boundary that encloses a larger area than the one produced by
the ratio-contour method. For example, Fig. 9(h) shows a case
where the proposed method detects a smaller-size structure than
the ratio-contour method. In this case, the proximity term may
play a more dominating role than the region-area term, yet it
may not dominate the continuity term used in the ratio-contour
method.

C. Comparisons to Two Edge-Linking Methods

In this section, we conduct experiments to illustrate the dif-
ferences between edge grouping and edge linking. We com-
pare against the Farag–Delp method [16], based on sequential
search techniques, and the Ghita–Whelan method [20], based
on a fast search algorithm by considering only local informa-
tion around the segment endpoints. Both of them are typical
edge-linking methods with source codes publicly available. For
the Ghita–Whelan method we used the implementation avail-
able as a component of the NeatVision package (http://www.
neatvision.com), which was created by the authors. Specifically,
we leave the Canny edge detector at its default values and the
window size is set at 11 11. For the Farag–Delp method, we
use the original M-SEL implementation provided by the authors
with the default settings. Fig. 10 shows the results of these two
edge-linking methods and the proposed edge-grouping method

on four real images. Note that, in this experiment the proposed
edge-grouping method is operated on the same edge-detection
results as used in the Ghita–Whelan method for a fair com-
parison. These results clearly illustrate the differences between
edge linking and edge grouping: edge linking aims at enhancing
the edge detection by connecting the edges to form longer edges
while edge grouping aims at detecting a salient closed boundary.
Note that, by integrating both boundary and region informa-
tion, the proposed edge-grouping method may detect a boundary
that is not fully detected by the edge-linking methods. For ex-
ample, in Fig. 10(a), the top-right gap on the back of the wolf
is filled by the proposed method but is not filled by either of
the edge-linking methods. Similar results can be observed in
Fig. 10(b) and (d).

D. Multiple Boundary Detection

So far, we present the proposed method in the context of only
detecting one boundary that minimizes the grouping cost (1).
In practice, there may be more than one salient structures in an
image and we can repeat the proposed method to detect mul-
tiple boundaries. The basic principle has been widely used in
many previous edge-grouping methods, including the ratio-con-
tour method. Given an image, e.g., the one shown in Fig. 11(a),
we first process it with the proposed method to detect the op-
timal boundary as introduced above. Then, we remove from the
graph all the edges associated to line segments that belong to
the detected optimal boundary, i.e., for each line segment
in the boundary, we remove both edges and from . We
then run the minimum-ratio-alternate-cycle algorithm again on
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Fig. 11. Examples of detecting multiple boundaries from real images by repeating the proposed edge-grouping method. From (a)–(d), each row shows, from left
to right, the input image, the Canny detection result, the detected segments, and the optimal boundaries detected in the first several iterations. (e) All 39 boundaries
iteratively detected from the “peppers” image shown in (b). The CPU times for obtaining the results in (a)–(e) are 3.23, 37.57, 59.82, 1.86, and 64.39 s, respectively.

, to detect the second optimal closed boundary. This process
can be repeated times to detect the th optimal boundary. It is
easy to show that the grouping cost for the detected boundaries
increases monotonically in this iteration process.

Fig. 11 shows the results of running the proposed method
multiple times on several real images. We can see that the pro-
posed method identifies different boundaries in different iter-
ations. The first and fourth boundaries in Fig. 11(a) are very
similar and they bound the same structure of the floor tile. This
comes from the fact that two very close parallel edges are de-
tected along each side of this floor tile, as shown in the second
and third columns in Fig. 11(a). Therefore, the detected seg-
ments along the first boundary are in fact different from the ones
along the fourth boundary. In practice, we can compare the op-
timal boundaries detected in different iterations and remove the
redundant ones.

Since the proposed method detects only closed boundaries,
the repeating of the proposed method may not handle well the
cases where two salient structures share part of the boundaries.
Fig. 11(d) clearly illustrates this problem: the detection of the
bottom fruit prevents the detection of the top two fruits be-
cause part of the boundaries of the top two fruits are removed
after the detection of the bottom fruit. Similar results are shown
in Fig. 11(b). Therefore, the proposed method is mainly suit-
able for detecting disjoint salient structures. Note that, since
the edge-grouping method is designed to detect one or a small
number of salient structure boundaries from an image, a good

edge-grouping method should be able to detect the most salient
boundaries from an image in the first several iterations by fil-
tering out the undesired noise and texture segments. It may not
be suitable to repeat the proposed method a large number of iter-
ations trying to connect all the detected segments, which include
texture and noise segments, as shown in Fig. 11(e). This is dif-
ferent from the edge-linking methods [18], [21].

VI. EXTENSIONS

In this section, we introduce four extensions to the proposed
method. The first two can be useful to exploit possible prior
knowledge about the desired salient structures, by adding
the properties of continuity and intensity homogeneity to the
grouping cost. The third extension seeks to adjust the balance
between proximity and region-area terms in the grouping cost,
since we find that, in certain cases, the region-area term might
have undesirable dominance in grouping. The fourth extension
is to ensure that detected salient boundaries are always simple
without containing any self intersections.

A. Adding Continuity

In the previous section, we show that, in general, the use
of the region-area property in the proposed method leads to
more favorable grouping than the use of continuity alone in the
ratio-contour method. However, there are certain cases where
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Fig. 12. Illustration of using Bezier curve to approximate the gap-filling and
detected segments.

the desired salient structure in an image is a priori known to be
smooth. To consider continuity, we modify the grouping cost to

(3)

where is the squared curvature along the arc-length param-
eterized boundary , and as in the ratio-contour method [13],
is a regularization factor that balances the proximity and conti-
nuity. In our experiments, we consistently set to be 10. The
additional curvature term in this extension makes the resulting
edge grouping biased to detect smoother boundaries.

However, it is difficult to directly measure the boundary cur-
vature in our formulation since the boundary is a polygon
consisting of a set of straight line segments. We address this
problem by interpolating the polygon by smooth cubic splines.
Particularly, given a gap-filling segment that connects de-
tected segments and , we measure its curvature
over , the Bezier curve with control points ,

, and , as shown in Fig. 12, where and are the
midpoints of and , respectively. We can then calcu-
late the curvature along this Bezier curve and use it to measure
the continuity. In the graph modeling, we only need to modify
the definition of the first edge weight to incorporate this curva-
ture term. Specifically, for the dashed edges and corre-
sponding to the gap-filling segment shown in Fig. 12, we
define their first edge weight as

With this modification, the graph remains essentially the same
and we can still apply the same graph algorithm to detect the
optimal boundary that minimizes this modified grouping cost
(3).

Note that this type of Bezier-curve interpolation may not
reflect the boundary continuity accurately when the angles

and become too small in Fig. 12. How-
ever, when any one of these two angles becomes too small,
this gap-filling segment is not likely to be included in a
smooth boundary. Therefore, in practice, we do not construct a
gap-filling segment between detected segments and

, if either of the angles and is smaller
than a given threshold. In our experiments we set this threshold

to be . Fig. 13 demonstrates several examples of applying
this extended edge-grouping method. For comparison, we also
include the grouping results from the proposed method without
the extension of adding continuity. These results show that this
extension may produce more favorable grouping results when
the desired structure boundary is smooth.

B. Incorporating Intensity Homogeneity

In many real images, the intensity inside a desired salient
boundary shows good homogeneity, while the intensity across
the boundary varies abruptly. In this section, we extend the
proposed method to incorporate such an intensity-homogeneity
property to help detect the desired salient boundaries. Particu-
larly, we modify the grouping cost (1) to

(4)

with

if
if .

Here, is the image intensity of the pixel at . is
a specified pixel intensity for the desired structure enclosed by
the detected boundary. can be either user specified or auto-
matically selected by histogram analysis. is the expected
pixel-intensity variation within the region enclosed by the de-
tected boundary. In essence, this new grouping cost only counts
the pixels with an intensity in the range in cal-
culating the enclosed region area, and, therefore, favors in de-
tecting a boundary that encloses a region with intensity as close
to as possible. The smaller the value of , the more homoge-
neous the region enclosed by the detected boundary.

With this new grouping cost, the graph remains the same.
The only difference is to slightly modify the definition of the
second edge weight to count only the pixels with an inten-
sity in in calculating the enclosed region area.
Therefore, we can still apply the same graph algorithm to detect
the optimal boundary that minimizes this new grouping cost.
Fig. 14 shows the experimental results on several real images
by applying this extended edge-grouping method. We can see
that the proposed extension of incorporating intensity homo-
geneity can improve the grouping results when we have some
a priori knowledge on the intensity of the desired structure. For
example, in Fig. 14(e), we set a smaller value for and detect
the bird while the original edge-grouping method without this
extension detects part of the tree, which shows larger intensity.

We can also replace by in the
grouping cost (4) to detect a boundary that encloses a region
with intensity not close to . Fig. 15 shows the experimental
results on several real images by using this extension. We can
see that this extension may also help improve the grouping
performance when it is a priori known that the desired salient
structure does not show certain intensity. Note that, the pro-
posed edge-grouping method can only produce a single closed
boundary in one iteration. Therefore, we cannot detect both
eyes in Fig. 15(d) in the same iteration. Instead, we may need
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Fig. 13. Sample grouping results of the proposed method with and without the extension of adding the boundary continuity. Each row shows, from left to right, the
input image, the Canny detection result, the detected segments, the optimal boundary detected by the proposed method without adding continuity, and the optimal
boundary detected by the proposed method extended with continuity. The CPU times for processing images (a)–(e) are 9.93, 13.03, 45.30, 4.26, and 60.08 s,
respectively (without the extension of continuity), and 8.60, 10.91, 41.26, 3.61, and 43.14 s, respectively (with the extension of continuity).

to apply the multiple boundary detection strategy introduced in
Section V-D to detect them sequentially.

Note that, in this section, we do not use the intensity vari-
ance of the enclosed region to measure the region homogeneity.
The major reason is that, without knowing the mean intensity
of the desired region, it is difficult to define a local weight for
each individual segment so that the region intensity variance can
be represented by summing up the weights of the involved seg-
ments. Therefore, such a grouping problem can not be solved by
the graph model and algorithm described in Section IV. In fact,
if we use the region intensity variance to measure the region ho-
mogeneity, there may not exist a polynomial-time algorithm to
solve the resulting grouping problem.

C. Proximity Exponentiation

The grouping cost (1) is simply a ratio between the total
gap length along the boundary and enclosed-region area. While
we have shown that this grouping cost usually leads to good
grouping results in many images, there are cases where the re-
gion-area term dominates the grouping cost prompting the pro-
posed method to detect an overly large region that does not
align well with any salient structure boundaries. This is mainly
due to the fact that region area is quadratic with respect to the
boundary perimeter, and, therefore, the total gap length along
the boundary. This problem has been found in previous pixel-
grouping methods that seek to combine boundary and region in-
formation [23].

To address this problem, we introduce a new measurement
of proximity by exponentiating the gap length to some power.

This would reduce the order of magnitude difference between
the proximity and region-area terms. A simple idea is to choose
an exponent and directly modify the grouping cost to

However, similar to the case discussed at the end of Sec-
tion VI-B, the numerator is not of an additive form in
terms of any weight of the included segments when .
Therefore, the resulting grouping problem can not be solved by
the graph model and algorithm described in Section IV. In fact,
there may not exist a polynomial-time algorithm to solve this
grouping problem. In this paper, we instead propose to modify
the grouping cost to

where is a gap-filling segments along . To encode this
grouping cost into the graph , we only need to modify the
first edge weight of the dashed edges, e.g., and corre-
sponding to the gap-filling segment , to

This does not change the graph structure of and, therefore, we
can still apply the same graph model and algorithm in Section IV
to detect the optimal boundary that minimizes this new grouping
cost.
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Fig. 14. Edge-grouping results with the extension of incorporating intensity homogeneity. Each row shows, from left to right, the input image, the Canny detection
result, the detected segments, the optimal boundary detected by the proposed method without any extension, and the optimal boundary detected by the proposed
method with the extension of adding intensity homogeneity. � is set to 50 for all images. T is set to 165, 50, 70, 230, and 50 for images (a)–(e), respectively. The
CPU times for processing images (a)–(e) are 82.56, 1.39, 17.27, 29.26, and 22.24 s, respectively (without the extension of intensity homogeneity); and 43.13, 0.53,
9.52, 10.36, and 12.82 s, respectively (with the extension of intensity homogeneity).

Fig. 16 shows an experiment where different ’s are used in
the proposed edge-grouping method with the extension of prox-
imity exponentiation. We can clearly see that the increase of the
proximity exponentiation factor can reduce the dominance of
the region area in the resulting edge grouping. A clear obser-
vation is that with the increase of , we usually detect bound-
aries with smaller enclosed region areas. Fig. 17 shows more ex-
perimental results in applying this extended method on several
real images. The grouping results are compared to the proposed
edge-grouping method without this extension (or equivalently,
with ). We can see that setting may lead to more
favorable grouping results. This improvement is more notice-
able on the image shown in Fig. 17(a), where the grouping result
without the extension does not detect any line segments along
the boundary of the bird, while setting allows the pro-
posed method to detect the whole bird’s boundary accurately.

D. Detecting Simple Boundaries

Just like many previous edge-grouping methods, the proposed
edge-grouping method has no guarantee to detect only simple
boundaries without self intersections. The major reason lies in
that the involved gap-filling segments may intersect with other

gap-filling or detected segments. The boundaries with self inter-
sections are not desirable since they do not represent the bound-
aries of any real structures. However, it should be noted first that,
in using the proposed method, the nonsimple boundaries do not
happen very frequently, since the presence of a self intersection
would produce a boundary that encloses multiple subregions
with opposite-sign region areas. In this case, the total enclosed
area is relatively small and, therefore, such a boundary is not
likely to be detected in using the proposed method. For example,
the nonsimple boundary shown in Fig. 18(a) encloses two sub-
regions with similar area but different area signs. The total area
enclosed by this boundary is in fact close to zero. However,
we still need to solve this self-intersection problem when it oc-
curs. In this section, we present a strategy to force the proposed
edge-grouping method to produce only simple boundaries.

The basic idea of this strategy is that, when a detected
boundary contains a self intersection, we try to avoid this self
intersection by not allowing the involved intersecting line seg-
ments to be included simultaneously in the detected boundary.
For example, if the detected boundary traverses
two intersecting line segments and as shown in
Fig. 18(a), we consider two cases. Case 1: Remove segment

from the input set of segments and repeat the proposed
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Fig. 15. Each row depicts the same information as in Fig. 14 except that the rightmost column shows the optimal boundary detected by the proposed method
with the extension of replacing � (x; y) by (1� � (x; y)) in the grouping cost (4). � is set to 50 for all images. T is set to 50, 200, 150, 150, and 220 for
images (a)–(e), respectively. The CPU times for processing images (a)–(e) are 42.10, 1.42, 2.52, 59.55, and 77.18 s, respectively (without the extension of intensity
homogeneity), and 16.01, 0.65, 0.40, 54.22, and 36.06 s, respectively (with the extension of intensity homogeneity).

Fig. 16. Illustration of the effect of � in the proposed grouping method with the extension of proximity exponentiation. The first row, from left to right, shows
the input image, the Canny detection result, the detected segments, and the optimal boundary detected by the proposed method without proximity exponentiation.
The second row, from left to right, shows the optimal boundaries detected by the proposed method with proximity exponentiation factor � =1.1, 1.2, 1.5, 1.7,
respectively.

method to obtain a boundary as shown in Fig. 18(b). Case
2: Remove segment from the input set of segments and
repeat the proposed method to obtain a boundary as shown
in Fig. 18(c). If both and are simple, the one with smaller
grouping cost is then the final optimal simple boundary. If
any one of them is nonsimple, we may continue considering two
more cases by further removing one more involved segment.

We can see that the direct implementation of this strategy in
fact generates a binary tree where the root node represents an
edge grouping on all segments, each nonroot node represents
an edge grouping by removing some segments, and each leaf
node represents an edge grouping where the detected boundary
is simple. It is also easy to see that the grouping cost keeps in-
creasing from a parent node to its children. In practice, we can
use a branch-and-bound technique [34] to improve the algo-

rithm efficiency: we always process the node with the smallest
grouping cost from all the available ones and for any node with
a grouping cost larger than a known leaf node (a known de-
tected simple boundary), we are not going to proceed to its chil-
dren. It is well known that this branch-and-bound strategy finds
the optimal solution but may have an exponential time-com-
plexity in the worst case. However, as mentioned above, the con-
sideration of the region-area information makes the proposed
edge-grouping method biased to produce simple boundaries.
Therefore, even if a nonsimple boundary is detected, we expect
that the branch-and-bound tree would have small depth and the
optimal simple boundary can be found in a very small number
of iterations. In our about 4 500 experiments on detecting the
first optimal boundaries (on different real images, with/without
various extensions), we only come across one case of detecting



2604 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

Fig. 17. Edge-grouping results of the proposed method with proximity exponentiation. Each row shows, from left to right, the input image, the Canny detection
result, the detected segments, the optimal boundary detected by the proposed method without the proximity exponentiation and optimal boundary detected by
the proposed method with a proximity exponentiation factor � = 1:5. The CPU times for processing images (a)–(e) are 33.21, 23.55, 42.90, 21.06, and 59.75 s,
respectively (without the proximity exponentiation), and 15.78, 17.69, 38.54, 17.22, and 55.49 s, respectively (with the proximity exponentiation factor � = 1:5).

Fig. 18. Illustration of the strategy for detecting only simple boundaries.

a nonsimple boundary, which is shown in Fig. 19. In this case,
the optimal simple boundary shown in Fig. 19(d) is achieved
after one of the intersecting segments shown in Fig. 19(c) [the
zoomed version is shown in Fig. 19(e)] is removed. When re-
peating the proposed method to detect multiple boundaries as
introduced in Section V-D, we may find more cases of self-inter-
secting boundaries. Note that, in a multiple boundary detection,
this branch-and-bound strategy is guaranteed to detect a simple
boundary in each iteration, but boundaries detected in different
iterations may intersect each other.

E. A Note on the CPU Time

Note that, when considering some of the previous extensions,
the proposed method may take less CPU time, as shown in the
captions of Figs. 13–15 and Fig. 17. The major reason is that the
running time of the proposed method is dominated by the step of
finding the desired minimum ratio alternate cycle in the graph .
The actual running time for this step is not only decided by the
number of vertices and edges in the graph , but also the edge

weights in . Particularly, this step consists of several rounds
of the minimum weight perfect matching (MWPM) algorithm
[13]. Both the needed rounds of MWPM and the running time
for each round of MWPM depend on the actual edge weights
in . For example, for the image shown in Fig. 14(d), seven
rounds of MWPM (in 1.49, 9.29, 7.86, 3.16, 3.06, 2.60, and
1.57 s, respectively) are taken without the extension of inten-
sity homogeneity and six rounds of MWPM (in 2.04, 6.02, 1.42,
0.18, 0.11, and 0.11 s, respectively) are taken with the exten-
sion of intensity homogeneity. While the extensions with inten-
sity homogeneity and proximity exponentiation do not change
the number of vertices and edges in , the extension with con-
tinuity reduces the number edges by imposing the additional
angle threshold in constructing the dashed edges. This is
an additional reason for the extension with continuity to take
less CPU time. For example, for the image shown in Fig. 13(a),
the constructed graph contains 18 336 dashed edges without
the extension of continuity and only 13 696 dash edges with the
extension of continuity.
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Fig. 19. Example of applying the branch-and-bound strategy to detect simple boundaries. (a) Input image. (b) Detected segments. (c) Optimal boundary detected
by the proposed method with the continuity extension (Section VI-A), with � = 1. It contains a self intersection pointed by an arrow. (d) Simple boundary detected
by the branch-and-bound strategy. (e), (f) Zoomed version of the subregions pointed by arrows in (c) and (d), respectively. The CPU times for processing this image
are 21.82 s to detect the boundary in (c) and 54.98 s to detect the boundary in (d).

VII. CONCLUSION

In this paper, we presented a new edge-grouping method that
can detect perceptually salient closed boundaries from an image
by combining the boundary and region information. In its base-
line form, the boundary proximity and region area are combined
into a ratio-form grouping cost function. We then develop a
graph model to reduce this edge-grouping problem to a graph
problem that can be solved in polynomial time in a globally op-
timal fashion. We tested this edge-grouping method on a large
set of synthetic data and many real images, both with compar-
isons to the ratio-contour method, which does not consider re-
gion information. We showed that the inclusion of region-area
information makes the proposed method more robust against
image noise and improves the performance in general. We also
introduced several useful extensions to the proposed method.
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