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ON SETS OF RELATIONS DEFINABLE BY ADDITION

JAMES F. LYNCH!

Abstract. For every k € w, there is an infinite set 4, < w and a d(k) € w such that for
all Q,, Q, < A4; where | Q,| = |Q,] or d(k) < [Qsl, | Q1| <R, the structures <w, +, Qo>
and (w, +, Q,> are indistinguishable by first-order sentences of quantifier depth &
whose atomic formulas are of the form # = v, ¥ + v = w, and Q(u), where u, v, and w
are variables.

§1. Introduction. The results presented here are concerned with sets of relations
defined in the following way. Let ¢ be a first-order sentence appropriate to struc-
tures of the form {w, +, Q), where Q is a g-ary relation on w, i.e. Q@ < w. Then
{Q € 10: {w, +, Q) = 0o} is the set of relations defined by ¢ in {w, +). This
kind of definability was first studied by J. Mycielski [15], who proved that the set
of relations C = {Q < 2w: Q is finite and connected} is not definable by any
first-order sentence in {w, +). (By connected we mean that 2¢ is regarded as the
set of points in the cartesian plane whose coordinates are nonnegative integers,
and a chess king can visit all points in Q without leaving Q.)

Mycielski’s argument runs as follows. He proves that if C is definable in
{w, +), then the relation D = {(x, y) € 2w: x divides y} is definable. in {w, + ).
By well-known results of K. Gdodel [16, Chapter 15] and J. Robinson [19], the
theory of {w, +, D) is undecidable, and by a result of M. Presburger [16, Chapter
13], the theory of {w, + ) is decidable. Hence C is not definable in {w, + ).

Mycielski then asked if E = {Q = w: |Q|is finite and even} is definable in
{w, +), since his method could not solve this apparently simpler problem. Our
method is indeed quite different. It is based on Ehrenfeucht games and is related
to our former work [12].

We show that for every k € w there is an integer d(k) and an infinite set 4, =
(in fact uncountably many such sets) which satisfy the following. For every Q,
01 € 4, if |Qol = |@y] or d(k) < |Qyl, |Q1] < Ry, then the Ehrenfeucht game
of length k on {w, +, Qo) and {w, +, Q;) is a win for player II.

Several further results follow from our construction of the sets 4,. By analogy
with the notion of indiscernibles [3], we show that 4, is a set of “k-indiscernibles”.
That is, let o(vy, ..., v,) be a relational formula (i.e. its atomic formulas are
of the form u =vand u + v =w, where u, v, and w are variables) of
quantifier depth k whose free variables are vy, ..., v,, and let (ay, ..., a,), and
(by, ..., b,) be sequences in A4, such that a; < a; <> b; < b, for 1 <i,j <n. Then
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(o, +> E=o(ay, ..., a,) < oby, ..., b,). We also show that there is a set 4 =
{gs: k = 1} (in fact uncountably many sets A) such that for eachk € w, {g;:i>1}
is an A, satisfying the above conditions.

Lastly, we consider the problem of definability of finite sets of finite relations.
Of course such a set may be defined by enumerating its members, but one may
still ask for the shortest sentence that defines it. We show that for sufficiently
large n € w, any relational sentence that defines E, = {Q < n: |Q| is even} in
{w, +, n) has quantifier depth greater than % log, log; log; n.

The concluding section describes some related problems, involving the definabi-
lity of sets of relations in languages more expressive than the first-order language
of + but without the full power of + and -.

§2. Preliminaries. We use the standard notation of first-order logic (see e.g.
Monk [16]). Formulas are constructed from atomic formulas by using the connec-
tives —, V, A (not, or, and, respectively) and the quantifiers 3 and V (there exists,
for all, respectively). a(vy, ..., v,) will denote a formula whose free variables
are vy, ..., v, Wewill write ¢ if v;, ... , v, are understood. By a relational formula
we mean one whose atomic formulas are of the form u = v, F(vy, ..., v,) = u
where F is an m-ary function symbol, and P(v,, ..., v,) where P is an m-ary
relation symbol; in our case we have u = v, u + v = w, and Q(u). We do not
allow terms such as u; + -- - + u,, although it is obvious that any formula with
such terms is equivalent to a relational formula.

The depth of a formula is the maximum nesting of quantification. Inductively,
if ¢ is atomic, then its depth is 0. If the depths of ¢, and g, are d; and d, respectively,
then the depth of —g is dy, the depth of g1 V g2 and gy A 05 is max(d;, dz), and the
depth of Fvg, and Ve, isd; + 1. A sentence is a formula with no free variables.
Thus, for a given finite type and every k € w, there are only finitely many (up to
equivalence) relational sentences of depth k.

o is the set of nonnegative integers and Z is the set of integers; every n € w is
identified with the set {0, 1, ..., n — 1}; and for any set 4 and n € w, "4 is the set
of n-tuples of elements in A. |4]| is the cardinality of 4.

A relational structure, or model, is a nonempty tuple <U, P>, , where Uis a
set (the universe of the structure), 7 is a set, and each P, is a relation on U. For
any formula ¢(v, ..., v,) appropriate to a structure ¥ with universe U and any
ay, ..., a,€ U weput A =o(ay, ..., a,) if o is true in A with a; assigned to v,
i=1,...,n

2.1 DEerINITION. For j = 0, 1 let ¥A; = (U,, P;).c; be two relational structures
of the same type, i.e. for each ¢ € I there is a p, € @ such that P;, = ¥ U; j =0, 1.
For any k € w and any sequences (aj, ..., @) € *Uy and (by, ..., by) € #U; we say
that (ay, ..., @) is isomorphic to (by, ..., b,) if the structures {{ay, ..., @},
Po, n (ﬁ‘){al, ooy a,,}, ays ooy a,,),el and <{b1, ceey blz}, Pl: n (p’){bl, ey bk}’
by, ..., by are isomorphic.

2.2 DEerINITION. Let %, %; be as in 2.1 and k € w. The Ehrenfeucht game
I'y (%, %y) of length k is the following game of perfect information. It starts
with player I choosing some element in one of the structures, say ;. Then player
II chooses an element in %;_;. The game continues with the players alternately
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choosing elements, where the ith choice of player I is in either of the structures,
say %;,, and the ith choice of player II is in ;_;,, until each player has chosen k
elements. Let a; be the ith element chosen in %, and b; be the ith element chosen
in ;. We will refer to the choosing of a; and b, as step i of the game and the initial
conditions as step 0. Player II wins if (ay, ..., ;) and (by, ..., b,) are isomorphic.

The following theorem is central to our results.

2.3 THEOREM (EHRENFEUCHT [4]). Let %, and U, be two relational structures of
the same type, and consider the following two conditions:

(i) Ay and A, cannot be distinguished by any first-order sentence of depth k.

(ii) The game I' (Mo, Ay) is a win for player 11.

Then (ii) implies (i). If Wy and Ny have a finite number of relations, then (i) and (ii)
are equivalent.

As with most applications of this theorem, we need only the part that states (ii)
implies (i). When we describe an Ehrenfeucht game on structures of the form
{w, +, Q), where Q < w, it is understood that we are considering relational
structures, i.e. we treat the + operator as a ternary relation.

§3. Results. Let

3.1) d©0) = 5, d(i + 1) = (2713 + 1)d(i),

(32) f(0) = L, fi + 1) = 2/())*,

(3.3) 2(0) = 0, g(i + 1) = 2f(1)* () + f()!,

(.4 hO) = 1, h(i + 1) = 2f(i)? h(i)Pf(i + 1),
Although not needed in our proofs, the growth rates of these functions are given
by the following easily verified formulas:

log,d(i) = 3(i%2 + 5i + 4 + b(i)) where 0 < b(i) < logze,

log, f(i) = (4 — 1)/3,

g() = (1 + c(i))Q¥-173)! where 0 < c(i) and c(i) — O,

log, h(i) = [2¢7+4(4F — 1)/3 — i2¢+2 4+ 4 — 1]/3.

Choose k € w, and let {p;: i € ) be any sequence in @ such that p, = 0 and

(3.5) pip1 = 2¢T3 f(Kk)® p; + 2f(k)?g(k) for i€ w, and p; = p; (mod f(k)!) for
1 <ijew.

For example, we could take

(3.6) p; = flk)! Li=H2+3f(k)3) for k > 2.
Let A, = {p;:i = 1}.

3.7 THEOREM. Let Q, and Q, be any subsets of A, such that |Qo| = |0, or d(k) <
|Q0|9 |Q1| < Ro- Then Pk((‘”a +, Q0>’ <(D, +, Q1>) isa winforplayer IIL.

The proof of this theorem is given in the next section. This theorem, together
with Theorem 2.3, immediately yields the following.

3.8 COROLLARY. For all Qy, Qy S A, such that |Qy| = |Qy| or d(k) < |Qyl, |Q1] < R,
{w, +,00) and {w, +, Q1) are indistinguishable by relational sentences of depth k.
The next results are proven by making slight modifications to the proof of 3.7.

3.9 THEOREM. A, is a set of k-indiscernibles for {w, + ).

3.10 THEOREM. For m € @, let A,,, = {p;: 1 < i < m}. If n > p,,, then for any
QO’ Ql = Akm such that |Q0| = |Ql| or |Q0|, IQll > d(k), Plz(<wa +,n, Q0>a <w’ +,
n, O1)) is a win.for player 11.
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3.11 THEOREM. Let E, = {Q < n: |Q| is even}. Then for sufficiently large n,
any relational sentence that defines E, in {w, +, n) has depth greater than
1 log, log, log, n.

Lastly, let A4 = {q,: k > 1}, where ¢,=0, and g, > 23 f(k)%q, +
2f(k + 1)2 g(k + 1) and g, = 0 (mod f(k)!) for k € w. Then for each k > 1,
{g;: i = k} satisfies (3.5), and the following holds.

3.12 COROLLARY. For every k > 1, the set {q;: i > k} satisfies the above theorems.

§4. Proof of Theorem 3.7.

4.1 DerFINITIONS. For j = 0, 1 let %; = {w, +, Q;), and for x, y € Q; let
0ix,y) ={zeQ;: x <z<yory<z<ux}|—1 For 0 <i<k,an i-vector
in 9, is a sequence s of the form (x, ..., x,, a7 ... , &, ) where

(D) B=wuv,uvel, Bl <glk — i), and |v| < h(k — i),

(i) n < 28541,

(iii) foreach j = 1, ..., n, a; = u,/v;, where u;, v; € Z and |u,], |v;| < f(k — i),

(iv) for each j = 1, ..., n, either x; € {a, ..., a;}, where a,, is the element in
9%, chosen at step m of I',( Ao, Ay), or x;€ Qp; and x; # x,, forl <j<m < n.

An i-vector in ¥, is defined similarly. For i < k, a minor i-vector is an i-vector
where, instead of (i) above, we have

(i) B=ulv,u, vel,

18 < 2ftk — i — 1)2g(k — i — 1), and |v| < 2f(k —i — 1)2h(k — i — 1)2.

By (3.3) and (3.4), a minor i-vector is an i-vector.

The elements Xy, ..., x, will be referred to as the terms of the i-vector s. We
puts = X7, a;x; + 6.

The choices made by the players at each step i in the game I" (%, U;) determine
two sets B;; € Q;(j = 0, 1). If | Q| = |Qy| then B;; = Q. If d(k) < |Qol, Q1] < o
then Bj, = {min(Q,), max(Q,)}, and in the description of player II’s strategy
below, B, ;. is defined inductively from Bj; in such a way that B;; = B; ;,;. We
puE Co; = By; U {al’ cee s ai} and Cy; = By; U {bl’ s bz}

An i-correspondence ¢ is a mapping from Cy; U Dy to Cy; U Dy where D; is a
subset of Q; (j = 0, 1), c is one-to-one and order preserving on By; U Dy, c(By;) =
By;, ¢(Dg) = Dy, and for 1 < m < i, c(a,) = b,

Ifs = (X1 .o » Xp @y, - - - » &y B) I8 an i-vector whose terms are in the domain
of ¢, then we put c(s) = (c(xy), - .., c(x,), a1, « -+ 5 Ay B)-

4.2 Player II's strategy. We assume player I has chosen a; in %,. The case when
player I has chosen b; in ¥ is symmetric. If a; € Q, we take s,, = s)y = (a;, 1, 0).
If a; ¢ Q, but there is some (i — 1)-vector s such that § = a;, we take 5,, = s)y = 5.
If there is no (i — 1)-vector s such that § = a;, let s,, be a minor (i — 1)-vector such
that 5,, is maximal among all minor (i — 1)-vectors s such that § < a;, and let 5,
be a minor (i — 1)-vector such that §,, is minimal among all minor (i — 1)-vectors
s such that a; < 5. If there are no s such that a; < §, then s, is undefined.

Let x;, ... , x, be the terms of s,, and s,, that are in Q,. Then By, = By, ;1 U
{x1, ..., x,}. We will show that there exists an (i — 1)-correspondence ¢ such that
X1, + - . » X, are in the domain of ¢ and for all x, y € By,

do(x, y) = 01(c(x), ¢(y)) < d(k — i), or
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Then B;; = c(By;). We then show that there exists some b; € w such that a; =
b(mod f(k — i)!) and c(s,,) < b; < c(sp) (or c(s,) < b; if 55 is undefined).
Player II chooses such a b;,.

The proof that this is a winning strategy for player II consists in showing that the
following conditions hold at the end of each step i, if player II follows the strategy.

(4.3)a; = b; (mod f(k — i)!).

(4.4) The set of i-correspondences is nonempty.

(4.5) Let x, y € By,; and c be an i-correspondence. Then either

0o(x, y) = d1(c(x), c(y)) < d(k — i), or
01(x, ), 01(c(x), c(»)) = d(k — i).

(4.6) Let s; and s, be i-vectors in 9, whose terms are in the domain of an i-
correspondence ¢. Then §, < 5, if and only if c(s;) < ¢(sy).

(4.7) a; € Q, if and only if b, € Q;.

It is clear that if (4.4), (4.6), and (4.7) hold for all steps 1 through & then (a, ... ,
a;) is isomorphic to (by, ... , b,) and player IT has won. The series of lemmas below
will show that (4.3) through (4.7) hold for i = 0, and if they hold for i — 1 then
player II can play according to the strategy of 4.2 and they will hold for i.

4.8 LEMMA. (4.3) through (4.7) hold at step 0.

PRrOOF. (4.3) and (4.7) hold vacuously, and (4.4) and (4. 5) are immediate from the
definition of By, and B,;in 4.1 above.

To prove (4.6), let sy = (X1, ..., Xp &1y -y &y B)and 53 = (1, 05 Vpr 71

. .5 Tp» 0) be O-vectors in %y, and let ¢ be a O-correspondence whose domain in-
cludes x;, ..., X4 Y1, - . -, V5. Suppose §; < §,. Treating the distinct terms of s, and
s, as independent vectors over the field of rational numbers, we get an inequality

490 < X4 ¢z, +0—f
where each z;isaterm of sy or s, and z; # z;forl <i<j<gq.

Ife; =0forj=1, ..., q then by reversing the steps used to get (4.9) with z;
replaced by ¢(z,) for 1 < j < g, we getc(s;) < c(s).

If some ¢; # 0, let z; be the largest z; such that ¢; # 0, say z; = p;.; as in (3.5).
Weclaime¢, > 0.

By 4.1(Gii), ¢ < 2¥*2. By 4.1(ii), |¢;] < 2f(k) for 1 < j < q. Therefore
Dipe;z; < 263 f(k)p;. Also,d — B < 2g(k) by 4.1(i), and |¢;| > 1/f(k)? by 4.1(iii).
If we assume ¢; < 0 then z; < 2¥¥3f(k)3p; + 2f(k)2g(k). But this contradicts condi-
tion (3.5), and therefore ¢; > 0. This, together with the fact that c(z;) > ¢(z))
for2 < j < gsuchthate; # 0, implies

0< Zq:ejc(zj) +0-0
=1

by similar reasoning.

Again, reversing the steps used to get (4.9) with z; replaced by c(z;) for1 < j < ¢,
we obtain c(s;) < c(sp). The proof that c(s;) < c(s;) implies §; < 3, is similar.
Q.E.D.

We now assume (4.3) through (4.7) hold for i — 1 where 1 < i < k. Let player
I choose a; in %, and let s, 55/, and By, be asin 4.2.
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4.10 LEMMA. There is an (i — 1)-correspondence c such that for all x, y € By, either
do(x, y) = di(c(x), c(y)) < d(k — i), or
do(x, »), d1(c(x), e(y)) = d(k — i).

Proor. If By ;_; = By, then the lemma follows from the induction hypothesis
for (4.5) and the fact that d(k — i) < d(k — i + 1).

If By, ;1 # By, then |By,| < 8o, so let By; = {u, ..., u, 1} where u; < u;,y for
j<p—1.Let g > 1 be such that u, e By ;_; and u; ¢ By ;_; for 1 < j < q. The
existence of g follows from u,_; € Byy S By, ;_1 (see 4.1).

By (4.4) there is an (i — 1)-correspondence ¢ with domain Cy ;_;. We will show
how to extend ¢ to {u;, ..., u,_;} in such a way that the lemma is satisfied for
x,y€{ug, ..., u,}. Sinceform =1, ...,i — 1, a,, € Qpimplies a,, € By ,_; by 4.2,
{ur, ..., u;_1} N Co,i-1 = D, and the extension will be consistent.

Case 1. 0o(ug, u,) < d(k — i + 1). By (4.5), 0o(ug, u,) = 01(c(up), c(uy)). Then we
canextend cto {u, ..., u, 1} so that do(u;, u,) = d1(c(u;), c(u,)) for0 < j,m < q.

Case 11. 0o(ug, u;) = d(k — i + 1). Then there exists some ¢ < g such that
Oo(uy u,y) = d(k — i). If there were no such ¢, then since ¢ < 2+—+3 + 1 by
4.1(ii), we would have dg(ug, u,) < (243 + 1) d(k — i) = d(k — i + 1) by (3.1).

We now extend ¢ to {uy, ..., 4,} as follows. Since uy € By ;_1, c(ug) is already
defined. Now assume c(u;) has been defined, where j < t. We define c(u;y)) to
be that element of Q; such that c(u;) < c(u;y;) and 0y(c(u)), c(ujyy) =
min(do(u;, u;41), d(k —i)). We extend ¢ to {u,4,, ..., u,_1} inasimilar fashion, using
a decreasing induction on j from ¢ to ¢ + 1. To show that the lemma is satisfied
for x, ye {uy, ..., u,}, we need only show c(u,) < c(u;41) and d;(c(uy), c(ur4y)) =
d(k — i). Butif this were not the case, then d,(c(u), c(u,)) < (2¢=+3 + Dd(k — i) =
d(k — i + 1), which contradicts (4.5) and our assumption that dy(ug, u,) >
dk — i+ 1).

Repeating this procedure on {u,, ..., u, 1}, we can extend c to By; in such a way
that the lemma is satisfied. Q.E.D.

In Lemmas 4.11 through 4.13 below, ¢ will be the (i — 1)-correspondence whose
existence was proven in the preceding lemma. Then B;; = c¢(By,), and (4.5) is
established for step i.

4.11 LEMMA. There is no (i — 1)-vector s’ in %, such that c(s,,) < §' < c(s)) (or
c(s,,) < §' if sy is undefined).

PrOOF. Suppose there were such an s’. Assuming |Qg| < Ry, let By, = {ug, .. .,
u, 1} as in the proof of Lemma 4.10, u; = c(u;) for j < p, and S} = {z'e Oy:
u; <z’ < uj, andz'is a term of s’} for j < p — 1. Now for each j < p — 1,
|S;| < 2#~+2 by 4.1(ii), and 2¢-+2 < d(k — i) by (3.1).

Then by Lemma 4.10, |S;| > |Sj|, where S; = {z€ Qy: uj < z < ujiq}.

We claim S; N Cyp; = @. Otherwise, let ze S; () Cy;. Recalling that Cy; = By,
Uda, ...,aq},ifzeS; N {ay, ..., a;} then z € By, by the definition of By, in 4.2.
But S; N By, = &, a contradiction. Therefore, letting T, be any subset of S; of
cardinality |Sj|, we can extend ¢ to an (i — 1)-correspondence c; such that ¢;(T;) =
S; forj < p — 1, i.e. the range of ¢; includes all of the terms of s’. Then §,, <
c7I(s") < 5 by (4.6), which contradicts our definition of s,, and s, (see 4.2). There-
fore no such s’ exists.
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If |Qy| = 8y, then by 4.1, By; = Oy, and the range of ¢ already includes all of the
terms of s’. We again conclude s ‘cannot exist. Q.E.D.

4.12 LEMMA. There exists a b; such that a; = b; (mod f(k — i)!), if §,, = a; then
c(s,) = b;, and if 5,, < a; < 5y then c(s,) < b; < c(sy) (or c(s,) < b; if sy is
undefined).

ProOF. If s, is undefined the result is immediate; thus let s,, = (x1, ..., x,,
A1y oy, B)and Sy = (P15 -+ 3 Vps 715+ - > Tps 0)- I 5, = @, we take b; = c(s,,).
Now, foreveryj = 1, ..., n, a; = u,/v;, where |v;| < f(k — i + 1) by 4.1(iii). If
x; € Qg then ¢(x;) € Oy and x; = ¢(x;) (mod f(k)!) by (3.5), and if x; = a,, for some
m < i, then c¢(x;) = b, and x; = c(x;) (mod f(k — m)!) by (4.3). Therefore
x;/v; = e(x;)/v;(mod f(k — i)!), and a; = b; (mod f(k — i)!).

If, on the other hand, there is no (i — 1)-vector s such that § = a;, then 5,, < a;
and s,, is a minor (i — 1)-vector. Let ¢ = c(sy) — ¢(s,,)- We will show that
¢ > f(k — i)!. The lemma then follows immediately.

Suppose ¢ < f(k — i)!. Since sy is also a minor (i — 1)-vector, S+¢=
Yo ric(y) — X ae(x;) + 0 = ufv, where, by 4.1(i)’, (ii), (iii) and (3.4),

vl < 2ftk — i) htk — D2 ftk — i + 127 = h(k — i + 1).
Also, by 4.1(i) and (3.3),
18 + el <2ftk — i) gtk — i) + ftk — i) = gtk — i + 1).

Therefore s = (x1, ..., X,, &1, ..., &y B+ €) is an (i — 1)-vector such that
¢(s) = c(sy). By the induction hypothesis for (4.6), § = 3y, SO Sy — §,, = &.
Letting{ = a; — 5,,, { < ¢ < f(k — i)!, and by similar reasoning t = (xy, ...,
Xp Q15 - - -» Oy B + {) is an (i — 1)-vector. But f = g;, a contradiction. Therefore
e > flk — i)!. QE.D.

Therefore player II can choose b; so that (4.3) is satisfied. If we extend c to
c(a;) = b,, then c is an i-correspondence, and (4.4) is satisfied.

4.13 LEMMA. a; € Qq if and only if b; € Q.

ProoF. If a; € Qy, then b, € Q; as shown in 4.2.

If a; ¢ Qpbut 5,, = a,, then b; = c(s,,). Now if b; € Qy, there is some u € Q, such
that we can extend ¢ to an (i — 1)-correspondence ¢; such that ¢;(v) = b,. This
follows from Lemma 4.10. By (4.6), ¢(s,,) = ¢;(¥) implies §,, = u. But then
a; = u € Q. Therefore b; ¢ 0.

If 5,, < a;, then a; ¢ Q, (otherwise s = (a;, 0) would be an (i — 1)-vector such
that§ = g,). By Lemma 4.11, 5, ¢ Q;. Q.E.D.

Therefore condition (4.7) is satisfied. It remains only to prove (4.6) holds.

4.14 LEMMA. Given that player 11 has chosen b; as above, (4.6) holds.

PRrOOF. Let 51, 55, and ¢ be as in (4.6), and assume §; < §,, where s; = (xy, .. .,
Xpy Q1 oo s Oy B)and sy = (V1 -+ s Vs 715 - - > 7o 0)- We may assume a; = x; = y;
(if a, is not a term of s, we take a; = 0, and similarly for ;). Let t; = (x5, ..., X,
Ay s Oy ) and t; = (Yo, .. s Vpo 725 - -5 Tps 0)- If @y = 71, then since ¢, and 1,
are (i — 1)-vectors and #; < f,, we get c(f;) < c(%) by the induction hypothesis,
and therefore c(s;) < c(s5).

If ay # 71, say a; < 71, then (¥ — &)/(r1 — a1) < a;. Now (i, — B)/(r1 — a1)
= f, where ¢ is'a minor (i — 1)-vector. We will prove this by showing that 4.1(i)’
through (iv) hold for .
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@) (8 — 0)/(y1 — ay) = u/v, where u, ve Z, |ufv| < 2f(k — i)2%g(k — i), and
v| < 2ftk — )2 h(k — i)

(i) n + p < 2k—i+2,

(iii) Let x; be a term of #; but not of #,. Then a; = u/v, where u, v e Z and |u|,
[v| < ftk — i) < ftk — i + 1). A similar conclusion applies to any y,; which is a
term of ¢, but not of #;,. Now let x; and y,, be terms of #; and 7, respectively such
that x; = y,. Then (a; — 7,)/(y; — @1) = u/v, where u, veZ and |u|, |v| <
2tk — i)* = flk — i + 1) by (3.2).

(iv) is obvious.

By definition (see 4.2), i < §,,. The domain of ¢ includes all the terms of s,,, since
they are in Cy. Therefore by the induction hypothesis ¢(r) < ¢(s,,) < b;, and
c(sy) < c(sy). -

The proof that c(s;) < c(sp) implies §; < 3, is similar. We get a minor (i — 1)-
vector 7' < b;. Thenby Lemma 4.11, " < ¢(s,,), and 5; < 5,. Q.E.D.

This concludes the proof of Theorem 3.7.

4.15 ProOF OF 3.9. Let ¢y, ..., ¢, dy, ..., d,€ A, such that ¢; < ¢; < d; < d;
for 1 < i, j < n. We will show that <w, +, ¢y, ..., ¢,y and {w, +, dy, ..., d,>
cannot be distinguished by any sentence of depth k. Let Qy = {cj, ..., ¢,} and
01 ={dy, ..., d,}. We define B;; = Q;forj=0,1and i =1, ..., k as in 4.1,
and we use the same strategy as in 4.2. By (4.4) and (4.6), (a3, ..., a,) in {w, +,
€1, ..., Cyy is isomorphic to (by, ..., b) in {w, +, dy, ..., d,>, and player II
wins. Q.E.D.

4.16 PrROOF OF 3.10. The proof is very similar to the proof of Theorem 3.7. The
only difference is that » is now a distinguished point, much like max(Q;),j = 0, 1,
in the proof of 3.7. Thus, if |Qy| = |Qy|, weput B;; = Q; U {n}fori =1, ...,k,
and if (Ql, |Q;| > d(k), we put B;y = {min(Q;), max(Q;), n} for j = 0, 1, and in
4.1(iv), n can be a term of an i-vector. Also, if player I chooses n in one of the
structures, then player II must respond by choosing n in the other structure. The
rest of the proof is unchanged. Q.E.D.

4.17 Proor OF 3.11. Let ¢ be a relational sentence of depth k that defines E, in
{w, +,n),and let m = d(k) + 3. Then for any set 4,,, as in 3.10, if n > p,,, there
are Qp, Q1 S A,, such that Q¢ = d(k) + 1 and |Q;| = d(k) + 2. But then
{w, +,n, Qpy and {w, +, n, Q;) are indistinguishable by ¢.

Therefore p,, > n. Taking p,, as defined in (3.6),

S5 @ SRy >
(2<4k—1>/3)]! (2KH32UD)d W +3 > g
(QUW-DRY 4k — 1)/3 + (k + 2 + 4¥)2F > log, n,
24 > log, n
for sufficiently large n. Therefore k > 1 log, log, log, n.  Q.E.D.

§5. Related problems. Our results show that the first-order language of + is very
limited in the sets of relations that it can define. On the other hand, the language
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of + and - is sufficiently powerful to define any recursively enumerable set of finite
g-ary relations over w. Also, every such set is representable in the form

{0 cw: 3P < w)<o, +,P, Q) =0}

where ¢ is a first-order sentence. The same applies to (VP < w). This is because
there is a sentence about {w, +, P) which secures P = {n?: ne w} U {n? — n:
n € w} and multiplication is first-order definable in <w, +, P) (see [13]). Between
these two extremes, however, there are languages about which comparatively little
is known. Among these are certain languages that can define those sets of finite
sequences of 0’s and I’s which are recognizable by time or space bounded Turing
machines ([6], [10], [11], [13]). The following is representative of these results.

Let {0, 1}* = (J,c, "2 be the set of all finite sequences of 0’s and I's. We identify
each x e "2 with the relation R, = {i < n: x(i) = 1}. We say that ¢ is an existen-
tial second-order sentence of degree d if g is of the form 30y, .. ., 3Q,r, where 7 is
a first-order sentence, each Q; is a g,-ary relation symbol, and ¢; < d. If d = 1, we
say that ¢ is monadic.

5.1 THEOREM (LYNCH [13]). Let X < {0, 1}*, T be a nondeterministic Turing
machine, and f be a function in “w such that for every n€ w and x € "2, x € X if and
only if T accepts x in time f(n). Then there is a monadic existential second-order
sentence g such that for alln € w and x € "2, x € X if and only if { f(n), +, R,> = 0.

This gives a refinement of the well-known second-order characterization of NP
due to N. Jones and A. Selman [11] and R. Fagin [6]. Thus, if one could show that a
given X < {0, 1}* is not definable by an existential second-order sentence of
degree d, then it would immediately follow that X is not recognizable in time n?. A
natural first step would be to characterize sets of relations definable by monadic
existential second-order sentences in +, i.e. those recognizable in linear time. There
are results on the definability of sets of relations by monadic second-order sentences
in the language of successor ([2], [5], [7], [L7]). Of course, comparable results for the
language of + would be much more difficult.

A related, but possibly more tractable, problem is to characterize sets of relations
in n which are definable in a primal algebra on n ({(n, fi, .. ., f.) is primal if every
function g: #n — n is obtainable by composing f;, . . ., f.. The Galois fields of prime
order are primal.) For example, let E, be as in 3.11. Is there a natural sequence of
primal algebras<{n, £, . .., £, where c is fixed, and a first-order sentence g such
that for eachne w, E, = {Q < n: {n, i, ..., £, Q> = 0}? A similar question
may be asked of C, = {Q < 2n: Q is connected}.

An alternative approach to characterizing definable sets of relations is to study
their size. Results in [1], [8], [9], [12], [18] show that for certain structures % and
certain measures and topologies, any set of relations defined by a first-order sent-
ence in 9 has measure O or 1, and is meager or comeager. (See also [14] for related
results about sentences in L,,.) For % = {Z, +, x + 1), it was shown in [12] that
for every first-order sentence ¢ there exists a partition of the space of relations into
two clopen sets P; and P, such that the subset of P; which satisfies ¢ is comeager
in P; and its measure equals that of P; and the subset of P, which satisfies g is
meager and of measure 0. Analogous results hold for the set of finite structures
{n, + (mod n), x + 1 (mod n)», n € w. Letting u(g, n) be the probability that
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{n, + (mod n), x + 1 (mod n), Q) = ¢ for a randomly selected Q < n, it
was shown in [12] that for every g, there is an a € @ such that for all b < a,
lim,_.u(o, an + b) exists. Central to the proofs in[12] was a strategy for player II
in the Ehrenfeucht game played on structures of the form {Z, +,x + 1, Q) and
{n, + (mod n), x + 1 (mod n), Q). However, the same methods do not apply to
{w, +) and {n, + ), or even to {w, <) and {(n, <). M. Benda [1] proved a 0-1
law for sets of unary relations definable in {Z, <), and Ehrenfeucht (in [12])
proved a limit law for sets of unary relations definable in (n, <), but these results
do not extend to sets of binary relations. Thus if more general theorems that apply
to these structures could be proven, it would be a significant extension of the
known probabilistic results in model theory.
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