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Abstract. Dynamic behavior in ecosystems can emerge as a result of
multiple interactions of different types as well as movements of the ecosys-
tem species between different patches. The extinction behaviors in ecosys-
tem models, which can result from the small species numbers, bring
stochasticity to the foreground as they are often not observable in deter-
ministic representations. To this end, we demonstrate an integrated app-
roach to ecosystem modeling from an algorithmic systems biology point
of view. We use a modeling interface, called LIME, which allows us to
give biologically intuitive models of a plant-pollinator system’s descrip-
tions with varying interaction types and patches. Our models, written in a
narrative style, are automatically translated into stochastic programming
languages. The discrete stochastic nature of the models brings about the
possibility to analyze the models with respect to their simulations as well
as various graph representations. Our analysis provides an assessment of
the functional dynamics of ecosystems with respect to the influence of
various interaction patterns and patch links.

Keywords: Ecosystem modeling · Plant-pollinator networks · Multiple
interactions · Stochasticity

1 Introduction

Systems biology is established as a methodology that assists investigations for
obtaining knowledge on dynamics and functioning of biological systems at vari-
ous levels. Recent developments in computational methods now offer new avenues
of investigation that provide contributions to long standing discussions also in
ecology. Individual based models (IBMs) [3,9,10] have been instrumental in
addressing different issues on ecosystems such as the relationship between pat-
terns and processes [23]. Similar considerations that are centered around complex
adaptive systems view of ecosystems have also been proven useful in addressing
dynamical properties of ecosystems [19].

Until relatively recently, ecosystem modeling has been dominated by con-
tinuous deterministic representations that provide estimations of populations’
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dynamics with respect to the species interactions. However, the greater availabil-
ity of powerful computers made a departure from more traditional considerations
feasible with the availability of new capabilities.

A point of interest in IBMs is on capturing certain sources of noise, which
can be important in small populations [24]. This is because the same amount
of living biomass can have a noisy behavior if it corresponds to an individual of
an ecosystem rather than millions of individuals of the same system, for exam-
ple, as in the relationship between whales and planktons. Stochasticity, which
is exploited in some IBMs, is an instrumental feature for studying the inher-
ent noise in ecosystems, both at individual level and at the population level.
In contrast to deterministic population-level models, stochastic models make it
possible to simulate actual extinction events. In this respect, generalistic dis-
cussions of ecosystem models are limited in both handling the noisy behavior
of small populations and modeling extinction. However, the extinction of rare
species is at the frontier of applied ecological research and conservation biology.

Another challenge that is confronting ecosystem models is the representation
of different types of concurrent interspecific interactions [21]. In ecology liter-
ature the focus is on single interaction types, with an emphasis on food webs,
and an increasing focus on plant-pollinator networks in isolation. However, in
ecosystems, different kinds of interactions always happen in parallel. The capa-
bility to model them simultaneously is important for a better understanding of
ecosystems.

In this paper, we present an algorithmic systems biology approach [26] for
compositional stochastic modeling of ecosystems with different kinds of interac-
tions between species and movement of species between patches, that is, spatial
regions [14]. For our ecosystem models, we use the CoSBiLab LIME (Language
Interface for Modeling Ecology) [14], which is designed for modeling ecosystems
with multiple interaction types and patches. The LIME language allows the user
to give a biologically intuitive model description in a narrative style. This makes
it possible to specify in the same model multiple parallel ecological interactions.

The LIME language is designed to perform static analysis on the model struc-
tures prior to the translation of the model description into a program suitable
for stochastic dynamical simulation. These features make it possible to design,
simulate and analyze ecosystem models with varying patterns of interactions
and structures without dealing with the technicalities of specialized program-
ming languages. In LIME, composability of the used language constructs play a
key role in expressing the different kinds of interactions in a unified manner in
a single model [15].

Besides mathematical approaches based on continuous differential equations,
and experimental approaches of biology, which are however difficult in ecology,
our algorithmic systems biology approach provides a discretized point of view of
the models. This in return makes it easier to adapt computational analysis tech-
niques for querying to the models and simulations with them. As an illustrative
example for this, we discuss how an approach for discrete stochastic flux analysis
can be used to obtain various graph representations of the models that display
the resource flows in the modeled systems, and the causal reading of these flows.
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Fig. 1. The graphical representation of a pollinator network on two patches, given with
the LIME model in Fig. 2. The species A and B are pollinators for the plant E, whereas
B and C are pollinators for the plant F. There is direct competition between the species
A and B. The pollinator species can move between the two patches A and B.

As an example case study of an ecosytem with multiplicity of ecological inter-
actions acting in parallel, we present models of a plant-pollinator system with
varying interaction patterns and patch structures. Because ecological systems
and processes are inherently variable, composability of the LIME language and
the constructs of the underlying framework help to manage the emerging com-
plexity. This way, we discuss and illustrate how these features can be used for the
construction of complicated ecosystem models together with their simulation and
analysis while keeping track of stochasticity and quantifying its consequences.

2 Algorithmic Modeling with LIME

We use a programming language that is based on process algebras. Process alge-
bras are formal languages, which were originally introduced as a means to study
the properties of complex reactive systems by providing rigorous discrete syn-
tactic representations of these systems. In process algebra, concurrency, that is,
the view of systems in which interacting computational processes are execut-
ing in parallel, is a central aspect. Stochastic extensions of these languages are
now broadly used tools for describing the dynamics of biological systems [27],
as they faithfully capture mass action kinetics with a continuous time Markov
chain semantics. While continuous and discrete representations approximate
each other, discrete representations are more realistic for the case of biologi-
cal systems, because populations are described by discrete variables and both
continuous and discrete representations are continuous in time. Moreover, dis-
crete representations provide the expressive power to model otherwise challeng-
ing structures [2,17].

The algebraic operators and the language constructs of the specialized
stochastic process algebra languages allow them to capture the structural and
functional aspects of the systems that they model. The biological system models
written in these languages vary within a spectrum that spans from molecular
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duration time 1.0

interactions

beeA pollinates flowerE

beeB pollinates flowerE

beeB pollinates flowerF

beeC pollinates flowerF

beeA and beeB compete

birth and death dynamics

beeA dies

beeB dies

beeC dies

flowerE dies

flowerF dies

patch dynamics

beeA moves from patchA to patchB

beeA moves from patchB to patchA

beeB moves from patchA to patchB

beeB moves from patchB to patchA

beeC moves from patchA to patchB

beeC moves from patchB to patchA

initial population

32 beeA in patchA

32 beeB in patchA

32 beeC in patchA

32 beeA in patchB

32 beeB in patchB

32 beeC in patchB

1000 flowerE in patchA

1000 flowerF in patchA

1000 flowerE in patchB

1000 flowerF in patchB

Fig. 2. LIME description of the model depicted in Fig. 1. The rates values are not
specified, they are thus set to the default value 1.0 for this case.

biology to ecology with respect to their levels of abstraction. However, the math-
ematical syntax of these languages makes them difficult to make modifications on
the models. When the modifications on the models involve functional phenomena
such as patterns of interactions, for example, as in ecosystem models, the syntax
of these languages becomes even more challenging. This creates obstacles for
these languages to be used effectively in experiments that involve variations of
the same model. As a result of this, specialized high level languages that provide
user friendly interfaces to these languages are developed and used for modeling
biological systems at these different levels of biological systems for expressing
various phenomena [11,13,14].

We describe our model in the language of LIME (Language Interface for
Modeling Ecology) [14,15]. After performing static analysis on the model struc-
ture, the LIME translation software tool translates the model description into
the stochastic process algebra languages BlenX [6] and SPiM for simulation. In
Appendix A, we give a short introduction to BlenX. For an indepth exposure to
BlenX we refer to [5,6], and for SPiM to [1,13,17,22]. A graphical representation
of a model is depicted in Fig. 1, and its complete LIME description is given in
Fig. 2. There, the rates are not specified, they are thus set to the default value
of 1.0 for this case.

A LIME input file can consist of five parts that describe different aspects
of the model. Some of these parts are optional, therefore they can be excluded
in models. However, the model in Fig. 2 includes all these parts. The first part,



Algorithmic Systems Ecology 5

duration time 1

interactions

beeA pollinates flowerE with rates

0.00294651236 and 0.00240000000

beeB pollinates flowerE with rates

0.0146105379 and 0.00191794978

beeB pollinates flowerF with rates

0.0163731225 and 0.0000820502154

beeC pollinates flowerF with rates

0.00301982726 and 0.00240000000

birth and death dynamics

beeA dies with rate 2.4

beeB dies with rate 2.0

beeC dies with rate 2.4

flowerE dies with rate 0.7

flowerF dies with rate 0.7

initial population

32 beeA 32 beeB 32 beeC

1000 flowerE 1000 flowerF

Fig. 3. A model obtained from the one depicted in Fig. 1, however on a single patch,
without competition interactions, and with explicit rate values.

initiated with the keyword duration, is a single statement on the simulation
duration. In this model, the simulations are specified to run until time point 1.0.

The second part, initiated with the keyword interactions, consists of the
sentences that describe the interactions of the individuals of the modeled ecosys-
tem. Each sentence describes an interaction in the ecosystem together with the
ecological patch where it happens and its rate. The interactions can be of four
different kinds: predator-prey, plant-pollinator, direct competition, and facilita-
tion. The model in Fig. 2 contains only plant-pollinator and direct competition
interactions. There are three pollinator species, that is, beeA, beeB, beeC, and
two flower species flowerE and flowerF. The species beeA is a pollinator for
the flowerE, and beeC is a pollinator for the flowerE, whereas beeB is a polli-
nator for both flowerE and flowerF. beeA and beeB have a direct competition
interaction between each other.

The optional third part of the input file, initiated with the keywords birth
and death dynamics, collects the information on the birth and death rates of
the species. Each sentence in this part describes the birth rate or the death rate
of a species in each habitat patch. Without habitat patch specification, a rate
is distributed and applies to all patches: this way, general rates can be defined.
In the model in Fig. 2, death rates for all the species beeA, beeB, beeC, flowerE
and flowerF are defined as the default rate value 1.0.

The optional fourth part of the input file, initiated with the keywords patch
dynamics, contains the information on the rates of the movements between
patches of the ecosystem: each sentence here describes the migration rate between
two particular patches of a given species. In the model in Fig. 2, the bee species
can move between connected patches as depicted in Fig. 1. patchA and patchB
are connected such that beeA, beeB and beeC can move between them.

The fifth part, initiated with the keywords initial population, provides
the information on the initial population sizes at the beginning of a simulation.
In the model in Fig. 2, there are 1000 flowers and 32 bees of each species in each
patch at the initial state.



6 O. Kahramanoğulları et al.

LIME translation algorithm maps the sentences of the model into program
code that implements the corresponding reactions. For example, each sentence
of the form

Pollinator pollinates Plant with rates rate1 and rate2

is mapped to two reactions

Pollinator + Plant →rate1 Pollinator + Plant + Plant
Pollinator + Plant →rate2 Pollinator + Pollinator + Plant + Plant.

Each sentence of the form

SpeciesA and SpeciesB compete with rate rate1

is mapped to a reaction

SpeciesA + SpeciesB →rate1 ·

In the model, when movement of species between spatial regions, given with
patches, are defined or interactions are defined specific to certain patches, the
LIME translation algorithm distributes these patches to the reactions with respect
to the model.

Due to these features, LIME models can be written, extended and modified
with a great ease with almost no prior knowledge of this language. As we illustrate
below, this capability makes it very easy to experiment with variations of models.

3 In Silico Experiments

As a first step for an analysis of the model, we work with a single-patch model,
given in Fig. 3, as in PatchA of the model depicted in Fig. 1, however we exclude
the direct competition between beeA and beeB. That is, there are only plant-
pollinator interactions, where beeA is a pollinator for flowerE, beeC is a polli-
nator for flowerF, and beeB is a pollinator for both flowerE and flowerF.

We instantiate the rates of the model such that the simulations display a close
to stable behavior. For this, we obtain the rates by fitting the ODE representa-
tion of the model to steady state, where the death rates and initial quantities are
fixed as in Fig. 3. For the fitting, we used the least-squares method provided by
the PET tool [28]. We assume that the time unit of the simulations is one year.
This provides realistic death rates for the bee populations in accordance with
their average lifespans within a season, and allows us to observe the population
behavior in response to interactions within that season. With stochastic simula-
tions, we obtain a close to stable level for the time interval from 0 to 1, however
as the simulation continues, the levels of the species depart from the steady state
values due to the fluctuations in the system. These simulations result either in an
exponential growth of the numbers of some or all of the species or in extinctions,
depending on the initial bias given by the fluctuations.
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Fig. 4. The plots on the left are from a simulation with the model in Fig. 3. The plots
on the right are from a simulation with a version of the model, which is scaled by 100.
The upper plots display the behavior of the flower species, whereas the lower plots
display the behavior of the bee species.

As we scale the model by multiplying the initial numbers by a scaling factor,
we observe extended stability with respect to simulation time as depicted in
Fig. 4, however with an increased tendency towards extinctions as the simulation
continues. This contrasts with the exponential increases often observed with
lower species numbers in the non-scaled model. Because our focus of interest is
the behavior within a season, the model does not factor for the seasonal changes
between two years. The model thus gives an estimate of the tendencies within one
time unit after the start of the simulation that are delivered by the interaction
patterns and also patch structures as we analyze below.

In order to analyze the effect of direct competition to the system behavior, we
introduce a direct competition interaction between the species beeA and beeB by
adding the following sentence to the interactions of the model: “beeA and beeB
compete with rate 0.1”. The direct competition interactions can be seen as a
mechanism that stresses beeA and beeB concomitantly when they are present at
the same patch. With the introduction of this interaction, as depicted in Fig. 5,
we observe that in the simulations the numbers of the species beeA and beeB
reduce until at least one of them goes extinct. As a result of this the numbers of
the species flowerE and flowerF reduce as their pollination by beeA and beeB
becomes hampered. When we increase the rate of the direct competition inter-



8 O. Kahramanoğulları et al.

Fig. 5. The plots on the left are from a simulation with the model in Fig. 3. The plots
on the right are from a simulation with a model that extends the model in Fig. 3 with
competition between beeA and beeB. The upper plots display the behavior of the flower
species, whereas the lower plots display the behavior of the bee species. The simulations
are with the versions of the models, which are scaled by 10.

action from 0.1 up to ten orders of magnitude, we observe that this increases the
extinction of the competing species within the considered time interval, however
it does not accelerate the extinction drastically in comparison to original rate.
Decreasing the competition rate more than two orders of magnitude brings the
behavior of the system close to the levels that are observed without competition.

In order to observe the effect of the availability of patches, between which
the bee species can move, we extend the model to two patches. The simulations
with the different versions of this model are depicted in Fig. 6. In the first ver-
sion of this extension, we consider a model without competition. This model
is obtained by extending the model in Fig. 3 with the sentences in Fig. 7. The
simulation plot, depicted on the left-hand-side of Fig. 6, is with this model. As
a second step for a consideration of patch dynamics, we extend this model with
direct competition. The plot on the right-hand-side of Fig. 6 is with the model,
which extends patch dynamics with direct competition between beeA and beeB
as above. Both models behave similar to their single patch versions as can be
seen by comparing these plots with those in Fig. 5. However, for the case of the
model without competition, the movement between patches provides a minor
stabilizing effect to the pollination in comparison to the single patch version.
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Fig. 6. Simulation plots with the model that extends the model in Fig. 3 to two patches,
named A and B. The plots on the left are without competition, whereas the ones on
the right include the competition between beeA and beeB. The upper plots display
the behavior of the flower species and the lower plots display the bee species. The
simulations are with the versions of the models, which are scaled by 10.

In order to model the different conditions on different patches, we restrict the
competition between beeA and beeB to patch A. We then performed experiments,
where we restricted the movement of species. These variations of the model are
as follows: (1) only beeA and beeB can move between patch A and patch B, and
beeC is stationary on both patches; (2) only beeA moves between patch A and
patch B; (3) only beeB moves between patch A and patch B. Example simulation
plots with these variations of the models are depicted in Fig. 8, where the plot on
the left is for the case where all the bee species can move between two patches,
whereas the plot on the right is for the case where only beeA and beeB can move
between patches.

In all these variations of the model, the restriction of competition to a sin-
gle patch provides a safe environment for the pollination in the patch without
competition, which is patch B. Apart from this, the two models with the sim-
ulations in Fig. 8, have similar behaviors since the movement of beeC between
two patches does not strongly hamper the competition between beeA and beeB,
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however their movement has a minor influence that reduces the effect of the
competition.The cases where either only beeA or only beeB can move between
two patches display similar behaviors to the simulation depicted on the left-
hand-side of Fig. 8.

patch dynamics

beeA moves from patchA to patchB with rate 0.1

beeA moves from patchB to patchA with rate 0.1

beeB moves from patchA to patchB with rate 0.1

beeB moves from patchB to patchA with rate 0.1

beeC moves from patchA to patchB with rate 0.1

beeC moves from patchB to patchA with rate 0.1

Fig. 7. The sentences that extend the model in Fig. 3 with patch dynamics

Fig. 8. Simulation plots with the model that extends the model in Fig. 3 to two patches,
named A and B. In these models, there is competition between beeA and beeB, however
only in patch A. The simulation plots on the left are with a model where all the bee
species can move between both patches, whereas the plots on the right are with a model
where the movement between patches is restricted to only beeA and beeB, and beeC are
stationary on both patches. The upper plots display the behavior of the flower species,
whereas the lower plots display the behavior of the bee species. The simulations are
with the versions of the models which are scaled by 10.
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1 : beeA+ → x 70
2 : beeA + flowerE → beeA + beeA + flowerE + flowerE x 71
3 : beeA + flowerE → beeA + flowerE + flowerE x 72
4 : beeB → x 58
5 : beeB + flowerE → beeB + beeB + flowerE + flowerE x 42
6 : beeB + flowerE → beeB + flowerE + flowerE x 333
7 : beeB + flowerF → beeB + flowerF + flowerF x 389
8 : beeC → x 67
9 : beeC + flowerF → beeC + beeC + flowerF + flowerF x 49

10 : beeC + flowerF → beeC + flowerF + flowerF x 57
11 : flowerE → x 669
12 : flowerF → x 642

Fig. 9. The reactions that occur during a simulation and their numbers of occurrences.

4 Flux Analysis

The reactions that are given by a LIME model are interpreted by the stochastic
simulation algorithm as a continuous time Markov chain (CTMC). A simulation
with a model can thus be seen as reduction of this complex structure, that is,
the model, into a simpler structure, that is, the simulation trajectory, which is a
path in the CTMC. However, during this process, some of the information on the
simulation can be lost. In particular, the causality between the reactions with
respect to the flow of resources during simulation remains hidden in the total
order of the reaction instances of the simulation trajectory, which is emphasized
by the unique time stamps of these reaction instances.

In [16], Kahramanoğulları and Lynch have introduced a method for flux
analysis on stochastic simulations with reaction networks, where flux is the flow
of resources between reactions of the network. The approach of [16] is based on
inspecting the reaction instances from the point of view of their dependencies on
one another during simulation, and relaxing their total order into a partial order
structure. The method then uses this partial order as a representation of causal
dependencies in the simulation, and processes it further to observe the flux in
the network with respect to the flow of the resources from a reaction to another
in arbitrary time intervals. The notion of flux obtained this way does not only
approximate the notion of flux given by continuous deterministic representations,
but also reveals other information that are not given by differential equation
analysis.

We perform flux analysis for the simulation time interval from 0 to 1. Figure 9
gives a list of the reactions together with their ids and their number of occur-
rences during a simulation. The flux graphs of this simulation within the con-
sidered time interval are depicted in Figs. 10, 11, 12.

Figure 10 shows how resources present at the beginning of the simulation are
distributed to the reactions of the network. Here, 0 denotes the initial state, and
the directed edges of the graph display how resources at the initial state are
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Fig. 10. Flux analysis graph for the simulation time interval from 0 to 1, indicating
the quantity of the resources distributed from the initial state to the reactions of the
network. Here, 0 denotes the initial state, and Fig. 9 gives a list of the reactions together
with their ids.

consumed by the reactions listed in Fig. 9. As shown by this graph, 11 of beeA,
1 of beeB, 12 of beeC, 373 of flowerE and 377 of flowerF die without partici-
pating in any pollination interaction. An implication of this observation is that
substantial fractions of the beeA and beeC populations die without participating
in any pollination interaction, which removes one third of these species. However,
almost all of the beeB participate in the reactions. A possible interpretation of
these facts is that beeB is the most important bee species for maintaining the
system. In order to check this hypothesis, we modified the pollination rates of
beeA, beeB, and beeC in three different versions of the model. The simulations
showed that lowering the rates of beeA and beeC by a third of the original rates
does not affect the stability as much as doing the same to beeB as this causes a
rapid decline in the levels of all the species. This observation agrees with the evi-
dence provided by the flux analysis indicating that beeB plays a more important
role in maintaining the system.

Figure 11 shows for different species the resources flowing from other reactions
to death reactions. We observe that 59 of beeA participate in a pollination before
they die, however 38 of these pollination interactions result in a reproduction
of beeA. Similarly, 55 of beeC participate in a pollination before they die, and
40 of these pollination interactions result in a reproduction of beeC. On the
other hand, while 57 of beeB participate in a pollination before they die, only
40 of these pollination interactions result in a reproduction of beeC. From these
observations, it follows that although comparable numbers of beeA, beeB and
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Fig. 11. Flux analysis graphs for the simulation time interval from 0 to 1, indicating
the quantity of species flowing from other reactions of the network, excluding the initial
state, to those for the death of the species. These are, respectively, for beeA, beeC, beeB,
flowerE and flowerF. Figure 9 gives a list of the reactions and their ids.

Fig. 12. Flux analysis graphs of different species for the simulation time interval from
0 to 1. The graphs indicate the quantity of species flowing between the pollination
reactions of the network. These exclude the initial state and the reactions for the
death of the species. Figure 9 gives a list of the reactions and their ids.
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beeC die after participating in a pollination interaction, beeB reproduces less
frequently as a result of these pollinations in comparison to beeA and beeC,
which can explain the critical role played by beeB in maintaining the system.

Other observations in Fig. 11 that are made on flowerE due to the reaction
for its death indicate that most of the pollinations of flowerE takes place as
result of pollinations by beeB, that is, 208 pollinations. This contrasts with the
25 pollinations of flowerE by beeB that result in the reproduction of beeB, and
the other 63 pollinations by beeA. Similarly, for the case of flowerF, 216 of the
death reactions occur after having participated in a pollination by beeB, which
does not result in a pollination. This contrasts with the total of 49 reactions that
occur after a pollination by beeC.

Figure 12 shows for different species the resources flowing between the reac-
tions of the network that model the pollination of the flower species. An obser-
vation on these graphs indicates that beeB flows between various pollination
reactions an order of magnitude more than both beeA and beeC. In particular,
the cycling of beeB between reactions 6 and 7 of Fig. 9 contrasts with those
for reactions 2 and 3 for beeA and for reactions 9 and 10 for beeC. This obser-
vation carries over to the behaviors of flowerE and flowerF with respect to
their incoming resources at reactions 6 and 7 in contrast to other reactions. This
points out that stability of the system is mainly due to pollination of flowerE
and flowerF by beeB, however only a fraction of these pollinations reflect to the
reproduction of beeB.

5 Discussion

The development of methods that can contribute to an understanding of the
relationships between individual level interactions and actions of ecosystems’
species and resulting behaviors at the ecosystem level is an area of research with
implications on conservation ecology. In particular, when agricultural ecosystem
domains are considered, methods that can help to predict the impacts of human
interference can help to assist policy making where conservation ecology has
also economic consequences. In this paper, with the aim of contributing to this
discussion, we outline an integrated approach from a computational systems
biology point of view.

We propose an integrated approach as this allows us to bridge methods from
various fields and use them under a unifying setting to address different aspects
of the models where they have specialized strengths. In this respect, the LIME
language, that stems from a language-design perspective, makes it possible to
easily construct the models and manage them [14]. On the other hand, the tech-
niques that we borrow from continuous deterministic ODE analysis for parameter
estimation provide the means to calibrate our model in order to factor for the
context, that is not included in the model structure, of the modeled ecosystem
[28]. Our flux analysis brings together ideas from concurrency theory that allows
us to exploit the discrete structures of the stochastic simulations to analyze them
as graphs that explain the flow of species. This is done by treating the species
as resources that flow between ecosystem events [12,16].
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Besides the other methods, which are standard in systems biology, our sto-
chastic flux analysis is prone to potential uses in ecology. With respect to the
case analysis of the present paper, an example is the identification of the species
that are critical to the robustness of the system. As our flux analysis showed,
beeB, which pollinated both flower species, is more important in this regard
than the other two species, which each pollinated only one species. This agrees
with the observations of [20] stating that removal of generalist pollinators had
the greatest effect on plant survival. Another potential application is on the
movement of individuals between patches, which can be important to ecosys-
tems [18]. Stochastic flux analysis can help to determine which movements have
major consequences for the populations, as this makes it possible to monitor the
movements at arbitrary time intervals as in our case study.

In the present paper, we have illustrated our approach on an hypothetical
ecosystem model. Future work includes applying the methods here to study
actual plant-pollinator systems by relying on field data, and also including other
kinds of interactions between ecosystem species. In this respect questions of
interest include the conditions that lead to stability or extinction, and identi-
fication of the keystone species. In our case study, also in order to factor for
the non-modeled ecosystem context, we used a parameter estimation method
in order to determine the rates of interactions. An alternative or complemen-
tary approach can be based on exploiting field data to assist the estimation of
these rates. However, typically field data shows the rates at which the various
pollinator species visit the plant species [7]. This poses other questions, as the
available data does not reflect the quantitative effect of the visitations on their
reproductive rates. Directions of future investigation include an investigation on
stochastic simulations to be used to infer the reproductive rates from the field
data.

Appendix A

BlenX shares features with the process algebra languages stochastic pi-calculus
[25] and Beta-binders [4], it thus keeps a strong focus on the interactions of
entities. Stochasticity is given by a continuous time Markov chain semantics,
and it is realized by an efficient implementation of the Gillespie algorithm [8].
BlenX is a part of the software platform COSBILAB.

In BlenX, each individual of the modeled system is described as an abstract
entity called box. Each box can interact with others via its connectivity interfaces
called binders, and the result of the interactions and also other autonomous
actions are determined by the user defined internal program of the box, which
employs the stochastic semantics. As an example, consider the two boxes in
Fig. 13, where each box has only one binder that is identified by its name, e.g.,
binder x and its type, e.g., X.

The internal program of a box describes the effect of the interactions and
the autonomous actions that the box can undertake. Every time when such an
action takes place with respect to the underlying stochastic semantics, the effect
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of the action is reflected to the interfaces, and this way the new state of the box
is computed. This is performed by the simulation engine by picking an action
of the model with respect to the Gillespie algorithm by taking the rates of the
available actions of all the boxes at that state. This results in a model behavior
in the form of a sequence of model actions that can be read as a time series of
the model individuals, i.e., boxes.

Fig. 13. Two BlenX boxes representing two interacting species A and B.

A BlenX model is written as two separate files, where the first file is the
description of all the boxes of the model and their binders. The second file of
the model contains a list of pairs of binder types together with their binding,
unbinding, and interaction rates, which can all be 0. With respect to the com-
patibilities given by this list, binders can bind or unbind with binders of other
boxes, or interact to exchange information communications with other boxes. As
an example for this, consider the model given in Fig. 13, where the expression
(X,Y, 0, 0, 1) indicates that the binders with types X and Y can interact with a
rate 1. The third and forth parameters of this expression state the binding and
unbinding rates are 0.

The interaction of a predator A and its prey B can be described in a BlenX
model with the boxes depicted in Fig. 13. The interaction rate, specified in the
BlenX code, determines the rate of the predation being modeled. The internal
program, which can be nil, describes this interaction and its consequences in
terms of the actions the box can undertake. The nil action does nothing. Other
stochastic actions that a BlenX box can perform are summarized as follows: a
box can

(i.) communicate with another box (or with itself) by performing an input
action, e.g., x?(message) that is complementary to the output action,
e.g., x!(message), of the other box, or vice versa, and this way send or
receive a message;

(ii.) perform a stochastic delay action;
(iii.) change (ch) the type of one of its interfaces;
(iv.) eliminate itself by performing a die action;
(v.) expose a new binder;
(vi.) hide one of its binders;
(vii.) unhide a binder which is hidden.

In addition to these actions, there are also other programming constructs
available such as if-then statements and state-checks. For example, let us consider
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the box A in Fig. 13. We can define the program P such that it changes the type
X to Z if this box is bound to another species via its interface x:

if (x, X) and (x, bound) then ch(x, Z) endif

As BlenX is a process algebra based language, internal programs can be
written as compositions of actions by using algebraic composition operators
in order to define increasingly complex behaviors. We can sequentially com-
pose actions by using the prefix-operator, written as an infix dot. For example,
ch(x,Z).hide(x).nil denotes a program that first performs change action and
then hides the changed binder. Programs can be composed in parallel. Paral-
lel composition (denoted by the infix operator |, for instance P|Q) allows the
description of programs, which may run independently in parallel and also syn-
chronize on complementary actions (i.e., input and output over the same chan-
nel). Programs can also be composed by stochastic choice, denoted with the
summation operator “+”. The sum of processes P and Q, P + Q behaves either
as P or as Q, determined by their stochastic rates, and selection of one discards
the other forever.
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